1.样本矩阵

  如果是一个随机变量,那么它的样本值可以用一个向量表示。相对的,如果针对一个随机向量,那么就需要利用矩阵表示,因为向量中的每一个变量的采样值,都可以利用一个向量表示。

  然后,一个矩阵可以利用行向量组与列向量组进行表示。

2.数学期望和方差的定义

3.协方差的定义式

4.协方差矩阵的定义

参考:http://blog.csdn.net/itplus/article/details/11452743

随机变量的方差variance & 随机向量的协方差矩阵covariance matrix的更多相关文章

  1. 方差variance, 协方差covariance, 协方差矩阵covariance matrix

    https://www.jianshu.com/p/e1c8270477bc?utm_campaign=maleskine&utm_content=note&utm_medium=se ...

  2. 方差variance, 协方差covariance, 协方差矩阵covariance matrix | scatter matrix | weighted covariance | Eigenvalues and eigenvectors

    covariance, co本能的想到双变量,用于描述两个变量之间的关系. correlation,相关性,covariance标准化后就是correlation. covariance的定义: 期望 ...

  3. A geometric interpretation of the covariance matrix

    A geometric interpretation of the covariance matrix Contents [hide] 1 Introduction 2 Eigendecomposit ...

  4. What is an eigenvector of a covariance matrix?

    What is an eigenvector of a covariance matrix? One of the most intuitive explanations of eigenvector ...

  5. 【概率论】4-3:方差(Variance)

    title: [概率论]4-3:方差(Variance) categories: - Mathematic - Probability keywords: - Variance - Standard ...

  6. C++ - Vector 计算 均值(mean) 和 方差(variance)

    Vector 计算 均值(mean) 和 方差(variance) 本文地址: http://blog.csdn.net/caroline_wendy/article/details/24623187 ...

  7. 标准差(bias) 方差(variance)

    偏差(bias) 偏差度量了学习算法的期望预测与真实结果的偏离程序, 即 刻画了学习算法本身的拟合能力 . 方差(variance) 方差度量了同样大小的训练集的变动所导致的学习性能的变化, 即 刻画 ...

  8. 图Lasso求逆协方差矩阵(Graphical Lasso for inverse covariance matrix)

    图Lasso求逆协方差矩阵(Graphical Lasso for inverse covariance matrix) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/ka ...

  9. covariance matrix 和数据分布情况估计

    how to get data covariance matrix: http://stattrek.com/matrix-algebra/covariance-matrix.aspx meaning ...

随机推荐

  1. C# 虚方法 与 隐藏方法(new) 区别

    重写和隐藏的定义: 重写:继承时发生,在子类中重新定义父类中的方法,子类中的方法和父类的方法是一样的          例如:基类方法声明为virtual(虚方法),派生类中使用override申明此 ...

  2. 安装JDK后JRE与JVM联系浅谈

    转自安装JDK后JRE与JVM联系浅谈 安装JDK后JRE.JVM之间的关系是什么呢?那么我们要从安装JDK慢慢说起. 如果安装了JDK,会发同你的电脑有两套JRE: 一套位于 <JDK安装目录 ...

  3. java基础知识回顾之java Thread类学习(五)--java多线程安全问题(锁)同步的前提

    这里举个例子讲解,同步synchronized在什么地方加,以及同步的前提: * 1.必须要有两个以上的线程,才需要同步. * 2.必须是多个线程使用同一个锁. * 3.必须保证同步中只能有一个线程在 ...

  4. substr_replace()函数:将手机号中间4位隐藏为*号

    <?php $mobile = "15810320826"; echo substr_replace($mobile,'****',3 , 4); ?> substr_ ...

  5. P1023 奶牛的锻炼

    P1023 奶牛的锻炼 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 USACO 描述 奶牛Bessie有N分钟时间跑步,每分钟她可以跑步或者休息.若她在第 ...

  6. BZOJ 3198 SDOI2013 spring

    为什么SDOI省选一年考两次容斥原理? 我们很容易发现>=k个相等时很好计算的 但是我们要求恰好k个,那么我们容斥即可 至于计算>=k个相等,首先我们枚举相等位置,对每个串对应位置做一遍h ...

  7. lintcode 中等题:Submatrix sum is 0 和为零的子矩阵

    和为零的子矩阵 给定一个整数矩阵,请找出一个子矩阵,使得其数字之和等于0.输出答案时,请返回左上数字和右下数字的坐标. 样例 给定矩阵 [ [1 ,5 ,7], [3 ,7 ,-8], [4 ,-8 ...

  8. POJ1248 Safecracker

    第一次写DFS的程序,虽然是个水题.1. 学了memset2. 可以存下来A-Z的各个次方的结果3. 可以排序优化4. 我用了t[0]==0来判断是否有解,也可设个flag5. 用了递归,也可用五层循 ...

  9. python package list

    argparse: 解析命令行参数:http://www.cnblogs.com/snow-backup/p/4010751.html logging: 写日志; http://blog.csdn.n ...

  10. spring autoWire注解

    1.autowire注解,可以用来获得applicationContext,ResourceLoader,BeanFactory的注入 autoWire会获得相应资源 2.autoWire注解还可以用 ...