UVA 11374 Airport Express 机场快线(单源最短路,dijkstra,变形)
题意:
给一幅图,要从s点要到e点,图中有两种无向边分别在两个集合中,第一个集合是可以无限次使用的,第二个集合中的边只能挑1条。问如何使距离最短?输出路径,用了第二个集合中的哪条边,最短距离。
思路:
(1)简单易操作方法:既然第二个集合的边只能有1条,就穷举下这些边,可能的边集进行求最短路,同时记录3个答案。复杂度是O(m*k)。
(2)时间复杂度低:不妨先求从s到每个其他点的距离d1[i],再求e到其他每个点的距离d2[i],接下来穷举第二个集合中的每条边u-v,那么最短距离为d1[u]+dis[u][v]+d2[v],注意边是无向的。麻烦在记录路径而已,还是挺容易操作的。复杂度是O(2m+k)。
下面是第一种方法的代码:
#include <bits/stdc++.h>
#define LL long long
#define pii pair<int,int>
#define INF 0x7f7f7f7f
using namespace std;
const int N=;
int n, m, k;
vector<int> vect[N];
int edge_cnt;
struct node
{
int from, to, dis, tag;
node(){};
node(int from,int to,int dis,int tag):from(from),to(to),dis(dis),tag(tag){};
}edge[N*]; void add_node(int from,int to,int dis,int tag)
{
edge[edge_cnt]=node(from,to,dis,tag);
vect[from].push_back(edge_cnt++);
} int tag[N], dist[N], vis[N], path[N];
int dijkstra(int s,int e)
{
memset(dist,0x7f,sizeof(dist));
memset(tag,,sizeof(tag));
memset(vis,,sizeof(vis));
memset(path,,sizeof(path)); priority_queue<pii,vector<pii>,greater<pii> > que;
que.push(make_pair(, s));
dist[s]=; while(!que.empty())
{
int x=que.top().second;
que.pop();
if(vis[x]) continue;
vis[x]=;
for(int i=; i<vect[x].size(); i++)
{
node e=edge[vect[x][i]];
if( e.tag> && dist[e.to]>dist[x]+e.dis )
{
dist[e.to]=dist[x]+e.dis;
path[e.to]=x;
if(e.tag==)
{
tag[e.to]=true; //到这个点用了快线
}
que.push( make_pair(dist[e.to],e.to) );
}
}
}
return dist[e];
} void cal(int s ,int e)
{
vector<int> ans;
int quick=, big=dijkstra(s,e), d=e;//先跑了一遍不用快线的 while( d )
{
ans.push_back(d);
d=path[d];
} for(int i=m*; i<(m+k)*; i+= ) //穷举每条可以用的快线
{
edge[i].tag=;
edge[i+].tag=; int dis=dijkstra(s,e);
if( dis<big )
{
big=dis;
ans.clear();
int ed=e, tmp=;
while( ed )
{
if( tag[ed] ) tmp=path[ed]; //有可能没有用到
ans.push_back(ed);
ed=path[ed];
}
quick=tmp;//如果没有用到,也会及时更新为0
}
edge[i].tag=;
edge[i+].tag=;
} reverse(ans.begin(),ans.end());
printf("%d",ans[]); //千万注意输出格式
for(int i=; i<ans.size(); i++) printf(" %d",ans[i]);
printf("\n"); if(quick) printf("%d\n",quick);
else puts("Ticket Not Used");//别忘了 printf("%d\n",big);
} int main()
{
freopen("input.txt", "r", stdin);
int s=, e, a, b, c, ttt=;
while(~scanf("%d%d%d", &n, &s, &e))
{
if(ttt) printf("\n");ttt++;//格式啊!
edge_cnt=;
memset(edge,,sizeof(edge));
for(int i=; i<=n; i++) vect[i].clear();
scanf("%d",&m);
for(int i=; i<m; i++)
{
scanf("%d%d%d",&a,&b,&c);
add_node(a,b,c,);
add_node(b,a,c,);
}
scanf("%d",&k);
for(int i=; i<k; i++)
{
scanf("%d%d%d",&a,&b,&c);
add_node(a,b,c,);
add_node(b,a,c,);
}
cal(s,e);
}
return ;
}
AC代码
UVA 11374 Airport Express 机场快线(单源最短路,dijkstra,变形)的更多相关文章
- UVA - 11374 - Airport Express(堆优化Dijkstra)
Problem UVA - 11374 - Airport Express Time Limit: 1000 mSec Problem Description In a small city c ...
- UVa 11374 - Airport Express ( dijkstra预处理 )
起点和终点各做一次单源最短路, d1[i], d2[i]分别代表起点到i点的最短路和终点到i点的最短路,枚举商业线车票cost(a, b); ans = min( d1[a] + cost(a, b ...
- UVA 11374 Airport Express (最短路)
题目只有一条路径会发生改变. 常见的思路,预处理出S和T的两个单源最短路,然后枚举商业线,商业线两端一定是选择到s和t的最短路. 路径输出可以在求最短路的同时保存pa数组得到一棵最短路树,也可以用di ...
- 利用分支限界法求解单源最短路(Dijkstra)问题
分支限界法定义:采用Best fist search算法,并使用剪枝函数的算法称为分支界限法. 分支限界法解释:按Best first的原则,有选择的在其child中进行扩展,从而舍弃不含有最优解的分 ...
- 【算法】单源最短路——Dijkstra
对于固定起点的最短路算法,我们称之为单源最短路算法.单源最短路算法很多,最常见的就是dijkstra算法. dijkstra主要用的是一种贪心的思想,就是说如果i...s...t...j是最短路,那么 ...
- 牛客编程巅峰赛S1第6场 - 黄金&钻石&王者 C.星球游戏 (单源最短路,Dijkstra)
题意:有\(n\)个点,\(m\)条双向边,两个方向的权值都是相等的,可以从\(A\)中的某个点出发走到\(B\)中的某个点,求所有路径中的最短距离,如果A和B中没有点联通,则输出\(-1\). 题解 ...
- 洛谷 P5837 [USACO19DEC]Milk Pumping G (单源最短路,dijkstra)
题意:有一\(n\)个点,\(m\)条边的双向图,每条边都有花费和流量,求从\(1\)~\(n\)的路径中,求\(max\frac{min(f)}{\sum c}\). 题解:对于c,一定是单源最短路 ...
- UVA 11374 Airport Express SPFA||dijkstra
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA - 11374 Airport Express (Dijkstra模板+枚举)
Description Problem D: Airport Express In a small city called Iokh, a train service, Airport-Express ...
随机推荐
- C#快速排序算法基础入门篇
相信算法对于许多开发人员来说都是一大难点,之所以难,就像设计模式一样,许多人在阅读之后,没有很好地理解,也不愿意动手上机操作,只停留在理论的学习上面,随着时间推移就慢慢淡忘. 有些东西,你可以发明创造 ...
- Java多线程——<二>将任务交给线程,线程声明及启动
一.任务和线程 <thinking in java>中专门有一小节中对线程和任务两个概念进行了具体的区分,这也恰好说明任务和线程是有区别的. 正如前文所提到的,任务只是一段代码,一段要达成 ...
- Leetcode#143 Reorder List
原题地址 先把链表分割成前后两半,然后交叉融合 实践证明,凡是链表相关的题目,都应该当成工程类题目做,局部变量.功能函数什么的随便整,代码长了没关系,关键是清楚,不容易出错. 代码: ListNode ...
- [设计模式] 4 原型模式 prototype
设计模式:可复用面向对象软件的基础>(DP)本文介绍原型模式和模板方法模式的实现.首先介绍原型模式,然后引出模板方法模式. DP书上的定义为:用原型实例指定创建对象的种类,并且通过拷贝这些原型创 ...
- Apache Options Indexes FollowSymLinks之讲解
禁止显示Apache目录列表-Indexes FollowSymLinks 如何修改目录的配置以禁止显示 Apache 目录列表. 缺省情况下如果你在浏览器输入地址: http://localhost ...
- 在smarty模板中取不到Cookie的值解决方案
在原生PHP中我们用:setcookie()来设置Cookie变量,用$_COOKIE这个全局变量来读取Cookie.例如 if(!isset($_COOKIE['user'])) { setcook ...
- 【锋利的JQuery-学习笔记】广告栏
效果图: html: <div id="jnImageroll"> <a href="#nogo" id="JS_imgWrap&q ...
- Web Server 和 HTTP协议(转)
转自:http://www.kuqin.com/shuoit/20150809/347488.html 一直在找实习,有点什么东西直接就在evernote里面记了,也没时间来更新到这里.找实习真是个蛋 ...
- 03 - 运行OCCI测试程序遇到0xc0150002错误
通过控制面板->管理工具->Event Viewer->Windows Log->Application Logs, 可以看到可以看到是如下错误 “C:\Windows\ora ...
- hdu1031 Design T-Shirt
http://acm.hdu.edu.cn/showproblem.php?pid=1031 #include<iostream> #include<stdio.h> #inc ...