System generator 安装之后会在Simulin模块库中添加一些Xilinx FPGA专用的模块库,包括Basic Element,Communication,Control Logic,DataTypes,DSP,Math,Memory,Shared Momory,Tool等模块库,只有使用这里的模块才能进行FPGA算法的仿真以及进行综合等等。

使用这些模块就可以简单的选一些模块,连一些线就能自动生成你需要的HDL代码,将开发人员从底层枯燥的代码编写中解脱出来,将更多的精力放在算法上,非常完美的体现了工具为人服务的理念。

最新的ISE14.2即Vavido已经能够使用C和C++生成HDL代码,那个主要是针对Xilinx公司7系列的FPGA,有兴趣的同学可以尝试。另外Matlab2012将HDL coder作为一个独立的工具添加进来,已经能够支持Xilinx和Altera公司的FPGA。

    

一、System Generator快速入门

1.Xilinx Blockset库的基本介绍 



System Generator和Simulink是无缝链接的,可以在MATLAB标准工具栏中直接启动,如图8-9所示。这些模块都根据其功能划分为不同的库,为了易于使用,又在某些库中添加了部分有广泛应用的模块,所有的模块都按字母顺序排列在Xilinx Index库中。读者需要注意的是:在Simulink环境中,只有通过Xilinx模块搭建的系统才能保证硬件可实现,其地位类似于HDL语言中的可综合语句。





图7-9 Xilinx DSP模块集

从设计流程中可以看出,熟悉Xilinx DSP基本模块库是设计流程中的关键环节,只有掌握了基本模块的特性和功能,才能更好地实现算法。由Xilinx模块库和System Generator一起,可生成Xilinx可编程器件的最优逻辑,这属于最低层的设计模块,地位等效于IP Core,共有90多个。Xilinx模块库简要说明如表7-1所列。

表7-1 System Generator库的简要说明

1.基本单元模块 



基本单元模块库中包含了数字逻辑的标准组件模块,使用这些模块可插入时间延迟、改变信号速率、引入常数、计数器以及多路复用器等。此外,还包含了3个特殊的模块System Generator标志、黑盒子模块(Black Box)以及边界定义模块,后文将对其进行详细说明。该库中简要的模块说明如表8-2所列。

表7-2 基本单元模块的说明列表

2.通信模块 



通信应用是FPGA的主要应用领域之一,因此Xilinx的通信模块库提供了用于实现数字通信的各种函数,包括卷积编解码、RS编解码以及交织器等模块。该库中简要的模块说明如表8-3所列。

表7-3 通信模块的说明列表

3.控制逻辑模块 



控制逻辑主要包括了用于创建各种控制逻辑和状态机的资源,包括了逻辑表达式模块、软核控制器、复用器以及存储器,其简要说明如表8-4所列。

表7-4 控制逻辑模块的说明列表

4.数据类型模块 



数据类型模块主要用于信号的数据类型转换,包括移位、量化、并/串、串/并转换以及精度调整模块,其简要说明如表8-5所列。

表7-5 数据类型模块的说明列表

5.DSP模块 



DSP模块是System Generator的核心,该库包含了所有常用的DSP模块,其简要说明如表8-6所列。

表7-6 DSP模块的说明列表

6.数学运算模块 



数学运算是任何程序所不可避免的,Xilinx提供了丰富的数学运算库,包括基本四则运算、三角运算以及矩阵运算等,其简要说明如表8-7所列。

表7-7 数学运算模块的说明列表

7.存储器模块 



该库包含了所有Xilinx存储器的Logic Core,其简要说明如表7-8所列。

表7-8 存储器模块的说明列表

8.共享储存器模块 



共享存储器模块主要用于共享存储器操作,相关内容将在7.4.3节展开讨论。

表7-9 共享存储器模块的说明列表

9.工具模块 



工具模块包含了FPGA设计流程中常用的ModelSim、ChipScope、资源评估等模块以及算法设计阶段的滤波器设计等模块。该库的模块在设计中起辅助作用,都是设计工具,一般不能生成HDL设计,其简要说明如表8-10所列。

表7-10 工具模块的说明列表

2.FPGA边界定义模块 



System Generator是FPGA实现和算法开发之间桥梁,通过两个标准模块“Gateway In”和“Gateway Out”来定义Simulink仿真模型中FPGA的边界。“Gateway In”模块标志着FPGA边界的开始,能够将输入的浮点转换成定点数。“Gateway Out”模块标志着FPGA边界的结束,将芯片的输出数据转换成双精度数。在Simulink环境中双击这两个模块会弹出配置对话框,可以设定不同的转换规则,如图7-10所示。

图7-10 转换模块示意图

3.System Generator标志 



每个System Generator应用框图都必须至少包含一个System Generator标志,如图8-11所示,否则会提示错误。标志模块用来驱动整个FPGA实现过程,不与任何模块相连。双击标志模块,可以打开属性编辑框,能够设置目标网表、器件型号、目标性能以及系统时钟频率等指标。





图7-11 System Generator标志模块示意图

4.建立简易的DSP设计 



一旦定义了FPGA边界就可以通过Xilinx DSP模块集合来建立各种DSP设计,包括滤波器、存储器、算术运算器、逻辑和比特操作器等丰富资源,每个模块都有详细的工作频率和比特宽度定义。标准的Simulink模块不能在“Gateway In”和“Gateway Out”之间使用,但常用来产生测试数据以及对FPGA的输出数据进行处理和分析。下面给出一个简单的FPGA系统设计实例。 



例7-2 使用System Generator建立一个3输入(a、b、c)的DSP4模块的计算电路,使得输出p=c+a*b,并利用标准的Simulink模块对延迟电路进行功能验证。 



1)打开Simulink库浏览器并建立一个新的Simulink模型,并保存为mydsp.mdl。 

2)在浏览器中选择Xilinx DSP48模块,并将其拖拽到mydspmydelay.mdl;按照同样的方法添加边界定义模块以及System Generator标志模块。 

3)为了测试DSP计算电路,添加Simulink标准库中的常数模块(Constant)和显示器(Display)模块。其中常数模块用于向DSP计算电路灌数据,作为测试激励;显示器则用于观测输出数据。 

4)连接模块,将所有的独立模块连成一个整体。其中Xilinx模块之间的端口可以直接相互连接,直接从一个端口拖拽鼠标到另一个端口来完成,或选中目标模块,按住Ctrl键,再点击要连接的模块,Simulink即可自动将两个模块连接起来;而Xilinx模块和非Xilinx模块之间的连接则需要边界模块(Gateway)来衔接。经过连接的设计如图7-12所示。





图7-12 延迟模块以及测试平台的组成架构

5)设定系统参数。双击“System Generator”模块,会出现系统设定对话框,如图8-13所示。其中“Compilation”栏选择编译生成对象,包括HDL网表、FPGA配置比特流、NGC网表、EDK导出工具、硬件协仿真类型以及时序分析文件等6种类型,本例选择HDL网表类型,会生成ISE工程以及相应的HDL代码;“Part”栏用于选择芯片型号,本例选择Spartan3E xc4vsx55-12ff1148。“Target”栏用于选择目标文件存放路径,本例使用默认值,则会在mydelay.mdl所在文件夹中自动生成一个netlist的文件夹,用于存放相应的输出文件。综合工具选择XST,HDL语言选择Verilog类型,系统时钟设的周期为100ns,即为10MHz。
“Clock Pin Location”栏的文本框中输入系统时钟输入管脚,则会自动生成管脚约束文件(由于本例只是演示版,所以该项空闲)。此外,可选中“Create testbench”选项,自动生成设计的测试代码。各项参数确认无误后,单击“OK”键,保存参数。





图7-13 系统参数设定对话框

6)设置关键模块参数。双击“Gataway In”、“Gataway Out”模块,会弹出图8-14和图 8-15所示的对话框。Gataway In模块属性可查看输入数据位宽和量化规则。





图7-14 Gataway In模块属性对话框                               图7-15 Gataway Out模块属性对话框

7)运行测试激励。当参数设置完成后,点击工具栏的“ ”按键,即可运行Simulink仿真,可以看到显示器输出为18,表明设计的功能是正确的。 

8)生成HDL代码。单击图7-13中的“Generate”按键,System Generator可自动将设计转化成HDL代码。整个转化过程的起始和结束提示界面分别如图7-16和图 7-17所示。





图7-16 自动生成代码过程的起始提示标志                                图7-17 自动生成代码过程的结束提示标志

读者可在相应的文件夹的“netlist sysgen”子目录中打开“nonleaf_results.v”文件,查看相应的代码,如下所示(为了节约篇幅,分栏显示),用户可将其作为子模块直接使用。

二、System Generator中的信号类型

System Generator是面向硬件设计的工具,因此数据类型只能是定点的,而Simulink中的基本数据类型是双精度浮点型,因此Xilinx模块和Simulink模块连接时需要通过边界模块来转换。“Gateway In”模块把浮点数转换成定点数,“Gateway Out”把定点数转换成浮点数。此外,对于Simulink中的连续时间信号,还必须经过“Gateway In”模块的采样转换才能使用。 



System Generator中的数据类型命名规则是非常简易且便于记忆的形式,如Fix_8_6表示此端口为8比特有符号数,其中6比特为小数部分。如果是无符号数,则带有“Ufix”前缀。在System Generator中,可通过选择 “Format” 菜单中的“Port/Signal Display Port Data Types”命令,来显示所有端口的数据类型,形象显示整个系统的数据精度。 



Xilinx模块基本上都是多形态的,即可根据输入端口的数据类型来确定输出数据类型,但在有些情况下需要扩展信号宽度来保证不丢失有效数据。此外,也允许设计人员自定义模块的输入、输出数据的量化效果以及饱和处理。在图8-14所示的“Gateway In”模块属性对话框中,“Output type”选择数据为布尔型、有符号数还是无符号数;“Number of bits”即为定点数的位宽;“Binary point”为小数部分的宽度;“Quantization”选择定点量化模式;“Overflow”用于设定饱和处理模式;“Sample
period”用于对连续时间信号的采样。因此按照System Generator的数据形式命名规则,“Gateway In”模块的数据类型为Fix/Ufix_(Number of bits)_(Binary point )。 



此外,还有DSP48 instruction,显示为“UFix_11_0”,是Xilinx针对数字信号处理的专用模块,用于实现乘加运算。

三、 自动代码生成 



System Generator能够自动地将设计编译为低级的HDL描述,且编译方式多样,取决于System Generator标志中的设置。为了生成HDL代码,还需要生成一些辅助下载的文件工程文件、约束文件等,和用于验证的测试代码(HDL testbench)。 



1.编译并仿真System Generator模块 



前面已经提到要对一个System Generator的设计进行仿真或者将其转化成硬件,则设计中必须包含一个System Generator生成标志。也可以将多个生成标志分布于不同的层中(一层一个),在层状结构中,处于别的层下的称为从模块,不属于从模块的则为主模块。但是特定的参数(如系统时钟频率)只能在主模块中设置。 



对于任一添加的模块,都可以在System Generator模块中指定其代码生成方式和仿真处理形式,要编译整个系统,在顶层模块中利用System Generator模块生成代码即可。 



不同编译类型的设定将会产生不同的输出文件,可选的编译类型包括两个网表文件类型(HDL网表和NGC网表)、比特流文件类型、EDK导出工具类型以及时序分析类型等4类。

  • HDL网表类型是最常用的网表结构,其相应的输出结果包括HDL代码文件、EDIF文件和一些用于简化下载过程的辅助文件。设计结果可以直接被综合工具(如XST等)综合,也可以反馈到Xilinx物理设计工具(如ngdbuild、map、par和bitgen等)来产生配置FPGA的比特流文件。编译产生的文件类型如ISE中是一致的。NGC网表类型的编译结果和HDL网表类似,只是用NGC文件代替了HDL代码文件。
  • 比特流文件类型的编译结果是直接能够配置FPGA的二进制比特流文件,并能直接在FPGA硬件平台上直接运行的。如果安装了硬件协仿真平台,可以通过选择“Hardware Co-simulation > XtremeDSP Development Kit > PCI and USB”,生成适合XtremeDSP开发板的二进制比特流文件。
  • EDK导出工具类型的编译结果是可以生成直接导入Xilinx嵌入式开发工具(EDK)的工程文件以及不同类型的硬件协仿真文件。
  • 时序分析类型的编译结果是该设计的时序分析报告。

2.编译约束文件 



在编译一个设计时,System Generator会根据用户的配置产生相应的约束文件,通知下载配置工具如何处理设计输入,不仅可以完成更高质量的实现,还能够节省时间。 



约束文件可控的指标包括:

  • 系统时钟的周期;
  • 系统工作速度,和系统时钟有关、设计的各个模块必须运行的速度;
  • 管脚分配;
  • 各个外部管脚以及内部端口的工作速度。

约束文件的格式取决于System Generator模块的综合工具:对于XST,其文件为XCF格式;对于Synplify/Synplify Pro,则使用NCF文件格式。 



系统时钟在System Generator标志中设定,编译时将其写入约束文件,在实现时将其作为头等目标。在实际设计中,常常包含速度不同的多条路径,其中速度最高的采用系统时钟约束,其余路径的驱动时钟只能通过系统时钟的整数倍分频得到。当把设计转成硬件实现时,“Gateway In”和“Gateway Out”模块就变成了输入、输出端口,其管脚分配和接口数据速率必须在其参数对话框中设定,编译时会将其写入I/O时序约束文件中。 



3.HDL测试代码 



通常System Generator设计的比特宽度和工作频率都是确定的,因此Simulink仿真结果也要在硬件上精确匹配,需要将HDL仿真结果和Simulink仿真结果进行比较,才能确认HDL代码的正确性。特别当其包含黑盒子模块时,这样的验证显得格外重要。System Generator提供了自动生成测试代码的功能,并能给出HDL代码仿真正确与否的指示。 



假设设计的名字是<design>,双击顶层模块的System Generator标志,将Compilation选项设为HDL Netlist,选中Create Testbench选项,然后点击Generate选项,不仅可以生成常用的设计文件,还有下面的测试文件:

  • <design>_tb.vhd/.v文件,包含完整的HDL测试代码;
  • Various.dat文件,包含了测试代码仿真时的测试激励向量和期望向量;
  • 脚本Scripts vcom.do和vsim.do文件,用于在Modelsim中完成测试代码的编译和仿真,并将其结果和自动编译产生的HDL测试向量进行比较。

Various.dat文件是System Generator将通过“Gataway In/Out”模块的数据保存下来而形成的,其中经过输入模块的数据是测试激励,而通过输出模块的数据就是期望结果。测试代码只是简单的封装器,将测试激励送进生成的HDL代码,然后对输出结果和期望结果完成比较,给出正确指示。

四、 编译MATLAB设计生成FPGA代码

Xilinx公司提供了两种方法将MATLAB设计.m文件转化为HDL设计,一种就是利用AccelDSP综合器;另一种就是直接利用MCode模块。前者多应用于复杂或高速设计中,常用来完成高层次的IP核开发;而后者使用方便,支持MATLAB语言的有限子集,对实现算术运算、有限状态机和逻辑控制是非常有用的。本节内容以介绍MCode模块为主。 



MCode模块实现的是装载在里面的.m函数的功能。此外,还能够使用Xilinx的定点类型数对.m函数进行评估。该模块使用回归状态变量以保证内部状态稳定不变,其输入、输出端口都由.m函数确定。 



要使用MCode模块,必须实现编写.m函数,且代码文件必须和System Generator模型文件放在同一个文件夹中,或者处于MATLAB路径上的文件夹中。下面用两个实例来说明如何使用MCode模块。 



例8-3 使用MATLAB编写一个简单的移位寄存器完成对输入数据乘8以及除以4的操作,并使用MCode将其编译成System Generator直接可用的定点模块。 



1.相关的.m函数代码为:

function [lsh3, rsh2] = xlsimpleshift(din) 

% [lsh3, rsh2] = xlsimpleshift(din) does a left shift 3 bits and a 

% right shift 2 bits. The shift operation is accomplished by 

% multiplication and division of power of two constant. 

lsh3 = din * 8; 

rsh2 = din / 4;

2.将.m函数添加到下列三个位置之一:

  • 模型文件存放的位置;
  • 模型目录下名字为private的子文件夹;
  • MATLAB路径下。

然后,新建一个System Generator设计,添加MCode模块,双击模块,在弹出页面中,通过Browse按键将.m函数和模型设计关联起来,如图7-18所示。





图7-18 MCode模块关联界面示意图

3.添加边界模块、Sytem Generator模块、正弦波测试激励以及示波器模块构成完整的设计,如图8-19所示。





图7-19 简单移位模块设计示意图

4.运行仿真,得到的结果如图7-20所示,从中可以看出,设计是正确的,正确实现了.m文件的功能。左图将信号放大了8倍,右图将信号缩小了4倍。





图7-20 简单移位模块仿真结果示意图

5.自动生成代码,得到的Verilog文件如下所列。



module myshift (

din, 

dout1, 

dout2 

); 



input [15:0] din; 

output [15:0] dout1; 

output [15:0] dout2; 



wire [15:0] din_net; 

wire [15:0] dout1_net; 

wire [15:0] dout2_net; 



assign din_net = din; 

assign dout1 = dout1_net; 

assign dout2 = dout2_net; 



mcode_6b96190926 mcode (   

          .e(1'b0), 

          .lk(1'b0), 

          .lr(1'b0), 

          .in(din_net), 

          .sh3(dout1_net), 

          .sh2(dout2_net) 

);

endmodule

五、子系统的建立和使用

System Generator设计经常作为大型HDL设计的一部分,本节就介绍如何使用System Generator来建立子系统模块,以及如何在整个系统中对其进行仿真。 



1.子系统的建立以及仿真方法 



子系统就是HDL语言中的模块,也类似于C++语言中的函数,是有效执行自顶向下设计的必备手段。如果将一个复杂设计完全在一个单独设计中实现,则该设计的验证和复查工作将是设计人员的噩梦。此外,从设计复用的角度讲,子系统可以IP核的方式为多个设计使用,具有高的可重用性,能节省大系统的开发时间。 



建立子系统最简单的方法就是利用NGC二进制网表文件,将System Generator设计封装成一个单独的二进制模块,这样综合工具将其作为黑盒子看待。在建立子系统时,管脚约束不能在Gataway模块中定义,同样时钟管脚也不能在System Generator模块中定义,应通过网表编辑器来指定物理约束,这是因为NGC网表中不仅包括了逻辑设计,还包括了设计的约束信息。在复杂系统中建立子系统的设计流程如下所示:





图7-21 建立子系统的设计流程

1)NGC网表文件 



如图7-21所示,生成NGC网表是建立子系统的第一步。在System Generator标志中将编译生成文件类型选为NGC List,如图7-22所示。如果设计中有时钟驱动电路,点击Generate后,会在目标文件夹生成“<design>_cw.ngc”文件,否则会生成“<design>.ngc”文件,其中<design>就是设计的名字。NGC网表文件包括设计中所有的逻辑和约束信息,这意味着将System Generator生成的所有HDL文件、内核以及约束等文件封装成一个单独的文件。





图7-22 选择编译生成文件类型

2)设计规则

在复杂系统中使用子模块时,必须遵循下面两条规则。 



首先,不能在子模块设计文件中出现“Gateway In”、“Gateway Out”以及System Generator标志模块,否则NGDBuild工具会产生下面的警告: 



WARNING: NgdBuild:483 - Attribute "LOC" on "clk" is on the wrong type of 

object. Please see the Constraints Guide for more information on this 

attribute. 



其次,不能在综合的时候往NGC网表文件中插入I/O缓存器,否则会报错。I/O缓存器只能在顶层模块中使用。 



3)逻辑综合 



当使用子系统的NGC网表文件综合时,其流程如图8-23所示。NGC模块可在顶层模块中以黑盒子的方式直接例化。为了简化该过程,当通过NGC目标编译后,System Generator提供了HDL例化模板,保存在设计路径,且以“<design>_cw.veo”命名。当选择VHDL语言时,则其模板名为“<design>_cw.vho”。





图8-23 综合时的流程图

4)仿真 



把System Generator模型编译成NGC目标后,生成的HDL文件却只能完成HDL仿真,不能在ISE中综合。由于HDL文件不能包含在工程中,如果要在HDL仿真器中运行整个设计,就必须指定用户.do文件。除了HDL文件之外,还需要将内存初始化文件(.mif)和系数文件(.coe)和HDL文件放在同一文件夹中。 



2.可配置子系统的建立 



可配置子系统是一类可以作为标准元件使用的Simulink模块,但又和标准元件模块不同,其存在多种可选功能,每一种功能都可以实现,可以让用户灵活选择。以可配置FIR滤波器为例,实现快速滤波器需要很多资源,而许多低速的滤波器却只需要相对很少的资源,将其做成可配置的模块,就可以允许用户根据实际情况在速度和硬件代价之间做出最优平衡。这体现了可配置子模块最大的优势。 



1)定义一个可配置子模块 



可通过新建Simulink库来定义可配置子系统,且可选模块的实现也由库来管理。下面给出新建建库的具体步骤: 



(1)新建一个空白库,如图7-24所示。





图7-24 新建空白库

(2)在库里添加基本实例模块,如图7-25所示。基本实例模块可以是System Generator中的任意组件。





图7-25 添加基本实例模块

(3)在库里面添加可配置子系统模版,如图7-26所示。模版可以在Simulink库浏览器中找到,其具体位置为“Simulink/Ports & Subsystems/Configurable Subsystem”。如果有需要,用户可以修改该模版的名字。





图7-26 添加可配置子系统模块

(4)保存库文件,然后双击模版模块,会弹出如图7-27所示的属性配置界面。根据实现的需要选中相关模块的检验框。最后单击“OK”再次保存库文件。





图7-27 属性配置界面

2)使用可配置子系统

要在设计中使用可配置子系统,先按照上面的步骤定义子系统,然后打开库,将需要的模版模块拖到设计中合适的位置,这样设计中就有了可配置子系统的实例,如图8-28所示的FIR滤波器模块。





图7-28 可配置子系统实例

在实例模块上点击右键,然后选择Block Choice选项中的Xilinx DA FIR,将实例作为基础实现模块使用。如图8-29所示。





图7-29 将实例作为基础实现模块

3)在可配置子模块中添加和删除实例模块

添加和删除子系统是编辑、修改可配置子系统的基本操作,按照下面的步骤可以从可配置子系统中删除实例模块: 



(1)打开并解锁子系统的库;双击模版模块,然后在弹出的用户界面中取消相应模块检验框的选定,单击“OK”就可以删除掉相应的子模块,如图7-30所示;再保存库,重新编译即可;最后仍需要在设计更新子系统。 

对于添加实例模块的步骤如下:首先,打开并解锁子系统的库;然后将实例模块拖到子系统设计中,双击模版模块;在弹出的用户界面中选中所需模块检验框,单击“OK”即可,如图7-31所示;再保存库,重新编译;在已有的设计中更新子系统。





图7-30 删除子模块                                                                图7-31 添加子系统

(2)生成可配置子模块的硬件电路

在System Generator中,模块可用于仿真和产生硬件。有时对于一个可配置子系统,最佳的方式是其既可以成为仿真基础模块,也可以用来生成硬件电路。例如将可配置子系统在仿真时作为普通的模块来产生仿真结果,在实现时作为黑盒子产生功能电路的HDL代码,就是一种常用方式。System Generator提供了可配置子系统管理模块来达到上述目的,其使用方法如下: 



首先,打开、解锁可配置子系统的库文件(除了模版模块),然后双击该模块; 



其次,将可配置子系统管理模块拖到打开的库中,该管理模块可以在“Xilinx Blockset/Tools/ Configurable Subsystem Manager”路径中找到,如图8-32所示。





图7-32 可配置子系统管理模块

最后,双击管理模块打开其属性配置GUI,选择可配置子系统中生成硬件电路的模块,如图8-33所示。单击“OK”保存子系统和库文件退出即可。





图7-33 选择可配置子系统的硬件模块

参考地址:http://blog.csdn.net/renshengrumenglibing/article/details/8144170

System Generator入门的更多相关文章

  1. System Generator入门笔记

    System Generator入门笔记  [CPLD/FPGA] 发布时间:2010-04-08 23:02:09  System Generator是Xilinx公司进行数字信号处理开发的一种设计 ...

  2. system generator学习笔记【02】

    作者:桂. 时间:2018-05-20  23:28:04 链接:https://www.cnblogs.com/xingshansi/p/9059668.html 前言 继续学习sysgen.接触s ...

  3. system generator学习笔记【01】

    作者:桂. 时间:2018-05-18  18:26:50 链接:http://www.cnblogs.com/xingshansi/p/9045914.html 前言 学习使用system gene ...

  4. System Generator简介

    前言 System generator 安装之后会在Simulin模块库中添加一些Xilinx FPGA专用的模块库,包括Basic Element,Communication,Control Log ...

  5. Vivado HLS与System Generator:联系与区别

    在很多年以前的ISE套件里面,有个功能强大的AccelDSP,它可以可自动地进行浮点到定点转换,并把算法生成可综合的HDL,还可以创建用于验证的测试平台,但是在4年前左右的时候销声匿迹了,当时的说法是 ...

  6. 利用ZYNQ SOC快速打开算法验证通路(5)——system generator算法IP导入IP integrator

    一.前言 利用FPGA设计算法一直以来都是热点,同样也是难点.将复杂的数学公式 模型通过硬件系统来搭建,在低延时 高并行性等优势背后极大提高了设计难度和开发周期.Xilinx公司的sysGen(sys ...

  7. 基于MATLAB System Generator 搭建Display Enhancement模型

    基于MATLAB System Generator 搭建Display Enhancement模型

  8. System Generator 生成IP核在Vivado中进行调用

    System Generator 生成IP核在Vivado中进行调用 1.首先在Simulink中搭建硬件模型 2.查看仿真结果 3.资源分析与时序分析 4.启动vivado,关联生成的IP核 5.调 ...

  9. System Generator 使用离散资源

    System Generator 使用离散资源 重要,怎样配置FPGA中的DSP Macro 最后是编译模型

随机推荐

  1. php常用代码(一)

    一:获取上个小时 方法1:date("H",strtotime("-1 hours"); 方法2:date('H',time()-60*60); 方法3:ech ...

  2. webrtc学习(一): webrtc开始

    一. 编译webrtc 1. 预先准备 1)  vpn. 用于同步代码. 这里给一个大概的估计吧. windows端包含vs2013 win8sdk wdk chromium源码等等, 总共需要至少8 ...

  3. [Java] HashMap详解

    转自:http://alex09.iteye.com/blog/539545 HashMap 和 HashSet 是 Java Collection Framework 的两个重要成员,其中 Hash ...

  4. 一些英文面试题(Android)

    Describe the APK format. The APK file is compressed the AndroidManifest.xml file, application code ( ...

  5. [转]Webservice client timeout

    本文转自:http://social.msdn.microsoft.com/Forums/vstudio/en-us/ed89ae3c-e5f8-401b-bcc7-333579a9f0fe/webs ...

  6. Kinect For Windows V2开发日志三:简单的深度读取

    代码示例: #include <Kinect.h> #include <iostream> using namespace std; int main(void) { IKin ...

  7. 【求无向图的桥,有重边】ZOJ - 2588 Burning Bridges

    模板题——求割点与桥 题意,要使一个无向图不连通,输出必定要删掉的边的数量及其编号.求桥的裸题,可拿来练手. 套模板的时候注意本题两节点之间可能有多条边,而模板是不判重边的,所以直接套模板的话,会将重 ...

  8. 【转】jmeter 进行java request测试

    本周使用jmeter进行一个远程dubbo接口的性能测试,因为没有访问页面,本来开发可以写一个页面,进行http请求的调用,不过已经看到jmeter可以直接对java request进行测试,所以尝试 ...

  9. 【ERROR】---Error executing "adb devices":ADB server didn't ACK

    搭建环境     ionic emulate android 的时候出现问题 端口占用,找到占用端口的程序,结束进程再启动 重新ionic emulate android 还是报错,闪了一下说fail ...

  10. SQL 存储过程 执行效率优化提升 (显示估计)

    在sql server 查询区 通过执行 "显示估计的执行计划" ,可以给出 存储过程 缺少索引的提示,并自动生成建立相应 索引 的代码 显示估计的执行计划 执行结果提示: 哦,算 ...