【BZOJ】1016: [JSOI2008]最小生成树计数 深搜+并查集
最小生成树计数
Description
现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生成树 可能很多,所以你只需要输出方案数对31011的模就可以了。
Input
第 一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,000。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10 条。
Output
输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。
Sample Input
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1
Sample Output
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<vector>
#include<cmath>
#include<stdlib.h>
#include<time.h>
#include<stack>
#include<set>
#include<map>
#include<queue>
using namespace std;
#define rep0(i,l,r) for(int i = (l);i < (r);i++)
#define rep1(i,l,r) for(int i = (l);i <= (r);i++)
#define rep_0(i,r,l) for(int i = (r);i > (l);i--)
#define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
#define MS0(a) memset(a,0,sizeof(a))
#define MS1(a) memset(a,-1,sizeof(a))
#define MSi(a) memset(a,0x3f,sizeof(a))
#define inf 0x3f3f3f3f
#define lson l, m, rt << 1
#define rson m+1, r, rt << 1|1
typedef pair<int,int> PII;
#define A first
#define B second
#define MK make_pair
template<typename T>
void read1(T &m)
{
T x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
m = x*f;
}
template<typename T>
void read2(T &a,T &b){read1(a);read1(b);}
template<typename T>
void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);}
template<typename T>
void out(T a)
{
if(a>) out(a/);
putchar(a%+'');
}
const int mod = ;
const int N = ;
const int M = ;
struct edge{int u,v,w;}e[M];
bool cmp(const edge& a,const edge& b){return a.w < b.w;}
struct data{int l,r,s;}d[M];
int f[N],sum;
int Find(int a)
{
return a == f[a] ?f[a]:Find(f[a]);// **
}
void dfs(int x,int now,int p)
{
if(now == d[x].r+){
if(p == d[x].s) sum++;
return ;
}
int fu = Find(e[now].u), fv = Find(e[now].v);
if(fu != fv){
f[fu] = fv;
dfs(x,now+,p+);
f[fu] = fu;
}
dfs(x,now+,p);
}
int main()
{
int n,m;
read2(n,m);
rep1(i,,m) read3(e[i].u,e[i].v,e[i].w);
sort(e+, e++m,cmp);
int cnt = ,tot = ;
rep1(i,,n) f[i] = i;
rep1(i,,m){
if(e[i].w != e[i - ].w){
d[cnt].r = i - ;
d[++cnt].l = i;
}
int fu = Find(e[i].u), fv = Find(e[i].v);
if(fu != fv){
f[fu] = fv;
tot++;
d[cnt].s++;// 边权相同的边的个数
}
}
d[cnt].r = m;
if(tot != n - )return puts(""),;//判断图是否连通
rep1(i,,n) f[i] = i;
int ans = ;
rep1(i,,cnt){
sum = ;
dfs(i,d[i].l,);
ans = ans*sum%mod;
rep1(j,d[i].l,d[i].r){
int u = e[j].u, v = e[j].v;
int fu = Find(u), fv = Find(v);
if(fu != fv) f[fu] = fv;
}
}
cout<<ans;
return ;
}
【BZOJ】1016: [JSOI2008]最小生成树计数 深搜+并查集的更多相关文章
- BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )
不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...
- [BZOJ 1016] [JSOI2008] 最小生成树计数 【DFS】
题目链接:BZOJ - 1016 题目分析 最小生成树的两个性质: 同一个图的最小生成树,满足: 1)同一种权值的边的个数相等 2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性 ...
- [BZOJ]1016 JSOI2008 最小生成树计数
最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...
- BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)
题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...
- bzoj 1016: [JSOI2008]最小生成树计数【dfs+克鲁斯卡尔】
有一个性质就是组成最小生成树总边权值的若干边权总是相等的 这意味着按边权排序后在权值相同的一段区间内的边能被选入最小生成树的条数是固定的 所以先随便求一个最小生成树,把每段的入选边数记录下来 然后对于 ...
- bzoj 1016 [JSOI2008]最小生成树计数——matrix tree(相同权值的边为阶段缩点)(码力)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 就是缩点,每次相同权值的边构成的联通块求一下matrix tree.注意gauss里的 ...
- BZOJ 1016 [JSOI2008]最小生成树计数 ——Matrix-Tree定理
考虑从小往大加边,然后把所有联通块的生成树个数计算出来. 然后把他们缩成一个点,继续添加下一组. 最后乘法原理即可. 写起来很恶心 #include <queue> #include &l ...
- 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)
1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...
- 1016: [JSOI2008]最小生成树计数
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 6200 Solved: 2518[Submit][St ...
随机推荐
- NPOI导出多表头Execl(通过html表格遍历表头)
关于NPOI的相关信息,我想博客园已经有很多了,而且NPOI导出Execl的文章和例子也很多,但导出多表头缺蛮少的:今天要讲的通过自己画html表格:通过html表格来导出自定义的多表头: 先来看要实 ...
- java_jdbc_3层 解耦
Dao - 提供接口 DaoImpl - 实现 DaoFactory - 工厂模式获取实现 DaoExcetpion - jdbc异常处理 实现runtime exception类即可 TestDem ...
- [置顶] 运算符重载,浅拷贝(logical copy) ,vs, 深拷贝(physical copy),三大件(bigthree problem)
一般的我们喜欢这样对对象赋值: Person p1;Person p2=p1; classT object(another_object), or A a(b); classT object = ...
- C语言细节总结笔记
C语言细节总结笔记 */--> C语言细节总结笔记 Table of Contents 1. 三步异或法交换数字 2. 做差法交换数字 3. 按n位置位 4. 求余求商求积 5. 辗除法求最大公 ...
- javascript深度克隆与javascript的继承实现
1.javascript深度克隆: //注意这里的对象包括object和array function cloneObject(obj){ var o = obj.constructor === Arr ...
- MSP430常见问题之开发工具类
Q1:我自己做了一块MSP430F149的试验板,以前用下载线进行调试没有出现过问题,但是,最近我每次make后用下载线调试时,总是弹出一个窗口,给我提示:Could not find target ...
- HashMap(JDK1.8)源码剖析
在JDK1.6中,HashMap采用位桶+链表实现,即使用链表处理冲突,同一hash值的Entity都存储在一个链表里.但是当位于一个桶中的元素较多,即hash值相等的元素较多时,通过key值依次查找 ...
- C#前端頁面判斷控件
var chbClass = document.getElementById("<%=DDL_CheckboxUserClass1.ClientID %>" + &qu ...
- Acitivity间数据的传递
使用startActivityForResult方法进行数据传递. MainActivity.java: public class MainActivity extends Activity { ...
- 误解了Windows Server AppFabric
想为自己的流程引擎找一个宿主,选择了几套方案,想先从AppFabric开始,原因主要出于以下几点: 1. 自己用过Windows Service或Form作为一些定时任务等应用的宿主,但苦于学艺不精, ...