题目链接

题意:求解两个字符串长度 大于等于k的所有相同子串对有多少个,子串可以相同,只要位置不同即可;两个字符串的长度不超过1e5;

如 s1 = "xx" 和 s2 = "xx",k = 1,这时s1[0] -> s2[0] 或s2[1],同理s1[1] 也可以对应两个,这时长度为1,当长度为2时,只能找出1个,所以总和为5;

思路:还是将两个字符串连接后求出height数组,只不过之后不能朴素地用O(n^2)枚举相同子串的长度在遍历height数组来得到答案了,这时需要用到单调栈优化(开了题解才知道的)

单调栈:维护一个height数组上升的栈,需要记录栈顶的height数值,同时在出栈时还要记录每个栈中元素所代表的个数,即到前一个栈中元素中,有多少个被当前元素出栈了。同时为了方便得到ans,还要维护一个tot,表示栈内所有元素对答案的贡献。即每一个height[i] >= k都能用height[i] - k + 1次,但是在出栈时,减掉的是栈顶元素比当前要入栈的元素多出的部分(这利用的是height数组的单调性),同时累计个数即可;

细节:由于计算的起点在左字符串和右字符串,我是分开来计算。对于另一边的同样是要入栈的,因为我们并没有改变height数组的值,入栈但是cnt = 0并不会对结果增加,但是却能保证栈顶元素的height值的正确性;

ps:ans最大值显然是会爆int的。直接为1e5个a;

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<vector>
#include<cmath>
#include<stdlib.h>
#include<time.h>
#include<stack>
#include<set>
#include<map>
#include<queue>
using namespace std;
#define rep0(i,l,r) for(int i = (l);i < (r);i++)
#define rep1(i,l,r) for(int i = (l);i <= (r);i++)
#define rep_0(i,r,l) for(int i = (r);i > (l);i--)
#define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
#define MS0(a) memset(a,0,sizeof(a))
#define MS1(a) memset(a,-1,sizeof(a))
#define MSi(a) memset(a,0x3f,sizeof(a))
#define inf 0x3f3f3f3f
#define lson l, m, rt << 1
#define rson m+1, r, rt << 1|1
typedef long long ll;
typedef pair<int,int> PII;
#define N 200007
int sa[N],t[N],t2[N],c[N],wv[N];
int cmp(int *r, int a, int b, int l){
return r[a] == r[b] && r[a+l] == r[b+l];
}
void build_sa(char *r, int n, int m){ // 倍增算法 r为待匹配数组 n为总长度 m为字符范围
int i, j, p, *x = t, *y = t2;
for(i = ; i < m; i++) c[i] = ;
for(i = ; i < n; i++) c[x[i] = r[i]]++;
for(i = ; i < m; i++) c[i] += c[i-];
for(i = n-; i >= ; i--) sa[--c[x[i]]] = i;
for(j = , p = ; p < n; j <<= , m = p){
for(p = , i = n-j; i < n; i++) y[p++] = i;
for(i = ; i < n; i++) if(sa[i] >= j) y[p++] = sa[i] - j;
for(i = ; i < n; i++) wv[i] = x[y[i]];
for(i = ; i < m; i++) c[i] = ;
for(i = ; i < n; i++) c[wv[i]]++;
for(i = ; i < m; i++) c[i] += c[i-];
for(i = n-; i >= ; i--) sa[--c[wv[i]]] = y[i];
for(swap(x,y), p = , x[sa[]] = , i = ; i < n; i++){
x[sa[i]] = cmp(y, sa[i-], sa[i], j) ? p - : p++;
}
}
}
int rk[N],height[N];
void getHeight(char *r,int n)
{
for(int i = ;i <= n;i++) rk[sa[i]] = i; // rk[i]:后缀i在sa[]中的下标
for(int i = ,j,k = ; i < n; height[rk[i++]] = k){
for(k? k--: ,j = sa[rk[i] - ];r[i+k] == r[j+k];k++);
}
}
char s[N],str[N];
int stk[N],num[N];
ll solve(int n,int L,int k)
{
ll ans = ,tot = ,top = ;
for(int i = ;i <= n;i++){
int cnt = ;
if(height[i] < k){
top = ,tot = ;
continue;
}
if(sa[i-] < L) cnt++,tot += height[i]-k+;
while(top && height[i] <= stk[top]){
tot -= num[top]*(stk[top]-height[i]);// 并没有+1;
cnt += num[top--];
}
stk[++top] = height[i];// 即使是另一边的还是要进栈;因为我们只是保留了栈内的总和tot,但是并没有修改height同时cnt = 0无影响;
num[top] = cnt;
if(sa[i] > L) ans += tot;
}
tot = ,top = ;
for(int i = ;i <= n;i++){
int cnt = ;
if(height[i] < k){
top = ,tot = ;
continue;
}
if(sa[i-] > L) cnt++,tot += height[i]-k+;
while(top && height[i] <= stk[top]){
tot -= num[top]*(stk[top]-height[i]);
cnt += num[top--];
}
stk[++top] = height[i];
num[top] = cnt;
if(sa[i] < L) ans += tot;
}
return ans;
}
int main()
{
int k;
while(scanf("%d",&k) == && k){
scanf("%s%s",s,str);
int n = strlen(s),L = n;
s[n] = '#'+,s[++n] = '\0';
strcat(s,str);
n = strlen(s);
s[n] = '#';
build_sa(s,n+,'z'+);
getHeight(s,n);
//for(int i = 2;i <= n;i++) cout<<height[i]<<" "<<sa[i]<<endl;
// cout<<endl;
printf("%I64d\n",solve(n,L,k));
}
return ;
}

poj 3415 Common Substrings 后缀数组+单调栈的更多相关文章

  1. poj 3415 Common Substrings —— 后缀数组+单调栈

    题目:http://poj.org/problem?id=3415 先用后缀数组处理出 ht[i]: 用单调栈维护当前位置 ht[i] 对之前的 ht[j] 取 min 的结果,也就是当前的后缀与之前 ...

  2. poj 3415 Common Substrings——后缀数组+单调栈

    题目:http://poj.org/problem?id=3415 因为求 LCP 是后缀数组的 ht[ ] 上的一段取 min ,所以考虑算出 ht[ ] 之后枚举每个位置作为右端的贡献. 一开始想 ...

  3. poj 3415 Common Substrings - 后缀数组 - 二分答案 - 单调栈

    题目传送门 传送点I 传送点II 题目大意 给定串$A, B$,求$A$和$B$长度大于等于$k$的公共子串的数量. 根据常用套路,用一个奇怪的字符把$A$,$B$连接起来,然后二分答案,然后按mid ...

  4. POJ - 3415 Common Substrings(后缀数组求长度不小于 k 的公共子串的个数+单调栈优化)

    Description A substring of a string T is defined as: T( i, k)= TiTi+1... Ti+k-1, 1≤ i≤ i+k-1≤| T|. G ...

  5. POJ3415 Common Substrings —— 后缀数组 + 单调栈 公共子串个数

    题目链接:https://vjudge.net/problem/POJ-3415 Common Substrings Time Limit: 5000MS   Memory Limit: 65536K ...

  6. POJ 3415 Common Substrings 后缀数组+并查集

    后缀数组,看到网上很多题解都是单调栈,这里提供一个不是单调栈的做法, 首先将两个串 连接起来求height   求完之后按height值从大往小合并.  height值代表的是  sa[i]和sa[i ...

  7. POJ - 3415 Common Substrings (后缀数组)

    A substring of a string T is defined as: T( i, k)= TiTi +1... Ti+k -1, 1≤ i≤ i+k-1≤| T|. Given two s ...

  8. poj 3415 Common Substrings【SA+单调栈】

    把两个串中间加一个未出现字符接起来,然后求SA 然后把贡献统计分为两部分,在排序后的后缀里,属于串2的后缀和排在他前面属于串1的后缀的贡献和属于串1的后缀和排在他前面属于串2的后缀的贡献 两部分分别作 ...

  9. POJ 3415 Common Substrings ——后缀数组

    [题目分析] 判断有多少个长度不小于k的相同子串的数目. N^2显然是可以做到的. 其实可以维护一个关于height的单调栈,统计一下贡献,就可以了. 其实还是挺难写的OTZ. [代码] #inclu ...

随机推荐

  1. LeetCode 42

    Trapping Rain Water Given n non-negative integers representing an elevation map where the width of e ...

  2. 关于css雪碧图sprite

    天气转凉了,又开始贪恋暖暖的被窝了. 早上不想起床的时候在被窝里看了有关于雪碧图的视频. 1.使用场景 V导航条,登录框img标签多次载入,性能低 X大图banner按需加载,如果做成雪碧图一次加载就 ...

  3. 《跨终端Web》读书笔记

    跨终端的Web成为了趋势,而这本书就是讲了在这种趋势下进行开发的常见问题及其解决方案,可能是限于篇幅,每个方面都没有展开细说,但这是这样让本书干货满满,几乎没有一句废话. 下面是一些笔记. Web的本 ...

  4. MVC中提示错误:从客户端中检测到有潜在危险的 Request.Form 值的详细解决方法

    今天往MVC中加入了一个富文本编辑框,在提交信息的时候报了如下的错误:从客户端(Content="<EM ><STRONG ><U >这是测试这...&q ...

  5. 给 Android 初学者的 Gradle 知识普及

    给 Android 初学者的 Gradle 知识普及:http://gold.xitu.io/entry/5778f8bd165abd0054b443b0/promote?utm_source=bai ...

  6. web安全实战

    前言 本章将主要介绍使用Node.js开发web应用可能面临的安全问题,读者通过阅读本章可以了解web安全的基本概念,并且通过各种防御措施抵御一些常规的恶意攻击,搭建一个安全的web站点. 在学习本章 ...

  7. [Entity Framework] MySQL @ Entity Framework 6

    原文 [Entity Framework] MySQL @ Entity Framework 6 要让MySQL能够用EF6,我花了一点时间,在此记录一下 安装元件 在设定档加入Provider 安装 ...

  8. 第四十二篇、自定义Log打印

    1.在Xcode 8出来之后,需要我们去关闭多余的日志信息打印 2.在开发的过程中,打印调试日志是一项比不可少的工程,但是在iOS 10中NSLog打印日志被屏蔽了,就不得不使用自定义Log 3.去掉 ...

  9. 第三十六篇、webService

    在很多的情况下,我们会常常遇到webservive写的接口,往往这种情况下,我们就需要拼接一段报文去与服务器对接 首先要明白webService的工作原理,,,(http://www.cnblogs. ...

  10. 第一章、C#委托和事件(Delegate、Event、EventHandler、EventArgs)

    第一章.C#委托和事件(Delegate.Event.EventHandler.EventArgs) 分类: 学习笔记-C#网络编程2012-12-08 14:10 7417人阅读 评论(3) 收藏  ...