转自:http://www.cnblogs.com/10jschen/archive/2012/08/21/2648451.html

我们在一个母字符串中查找一个子字符串有很多方法。KMP是一种最常见的改进算法,它可以在匹配过程中失配的情况下,有效地多往后面跳几个字符,加快匹配速度。

当然我们可以看到这个算法针对的是子串有对称属性,如果有对称属性,那么就需要向前查找是否有可以再次匹配的内容。

在KMP算法中有个数组,叫做前缀数组,也有的叫next数组,每一个子串有一个固定的next数组,它记录着字符串匹配过程中失配情况下可以向前多跳几个字符,当然它描述的也是子串的对称程度,程度越高,值越大,当然之前可能出现再匹配的机会就更大。

这个next数组的求法是KMP算法的关键,但不是很好理解,我在这里用通俗的话解释一下,看到别的地方到处是数学公式推导,看得都蛋疼,这个篇文章仅贡献给不喜欢看数学公式又想理解KMP算法的同学。

1、用一个例子来解释,下面是一个子串的next数组的值,可以看到这个子串的对称程度很高,所以next值都比较大。

位置i

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

前缀next[i]

0

0

0

0

1

2

3

1

2

3

4

5

6

7

4

0

子串

a

g

c

t

a

g

c

a

g

c

t

a

g

c

t

g

申明一下:下面说的对称不是中心对称,而是中心字符块对称,比如不是abccba,而是abcabc这种对称。

(1)逐个查找对称串。

这个很简单,我们只要循环遍历这个子串,分别看前1个字符,前2个字符,3个... i个 最后到15个。

第1个a无对称,所以对称程度0

前两个ag无对称,所以也是0

依次类推前面0-4都一样是0

前5个agcta,可以看到这个串有一个a相等,所以对称程度为1前6个agctag,看得到ag和ag对成,对称程度为2

这里要注意了,想是这样想,编程怎么实现呢?

只要按照下面的规则:

a、当前面字符的前一个字符的对称程度为0的时候,只要将当前字符与子串第一个字符进行比较。这个很好理解啊,前面都是0,说明都不对称了,如果多加了一个字符,要对称的话最多是当前的和第一个对称。比如agcta这个里面t的是0,那么后面的a的对称程度只需要看它是不是等于第一个字符a了。

b、按照这个推理,我们就可以总结一个规律,不仅前面是0呀,如果前面一个字符的next值是1,那么我们就把当前字符与子串第二个字符进行比较,因为前面的是1,说明前面的字符已经和第一个相等了,如果这个又与第二个相等了,说明对称程度就是2了。有两个字符对称了。比如上面agctag,倒数第二个a的next是1,说明它和第一个a对称了,接着我们就把最后一个g与第二个g比较,又相等,自然对称成都就累加了,就是2了。

c、按照上面的推理,如果一直相等,就一直累加,可以一直推啊,推到这里应该一点难度都没有吧,如果你觉得有难度说明我写的太失败了。

当然不可能会那么顺利让我们一直对称下去,如果遇到下一个不相等了,那么说明不能继承前面的对称性了,这种情况只能说明没有那么多对称了,但是不能说明一点对称性都没有,所以遇到这种情况就要重新来考虑,这个也是难点所在。

(2)回头来找对称性

这里已经不能继承前面了,但是还是找对称成都嘛,最愚蠢的做法大不了写一个子函数,查找这个字符串的最大对称程度,怎么写方法很多吧,比如查找出所有的当前字符串,然后向前走,看是否一直相等,最后走到子串开头,当然这个是最蠢的,我们一般看到的KMP都是优化过的,因为这个串是有规律的。

在这里依然用上面表中一段来举个例子:

位置i=0到14如下,我加的括号只是用来说明问题:

(a g c t a g c )( a g c t a g c) t

我们可以看到这段,最后这个t之前的对称程度分别是:1,2,3,4,5,6,7,倒数第二个c往前看有7个字符对称,所以对称为7。但是到最后这个t就没有继承前面的对称程度next值,所以这个t的对称性就要重新来求。

这里首要要申明几个事实

1、t 如果要存在对称性,那么对称程度肯定比前面这个c 的对称程度小,所以要找个更小的对称,这个不用解释了吧,如果大那么t就继承前面的对称性了。

2、要找更小的对称,必然在对称内部还存在子对称,而且这个t必须紧接着在子对称之后。

如下图说明。

从上面的理论我们就能得到下面的前缀next数组的求解算法。

void SetPrefix(const char *Pattern, int prefix[])

{

int len=CharLen(Pattern);//模式字符串长度。

prefix[0]=0;

for(int i=1; i<len; i++)

{

int k=prefix[i-1];

//不断递归判断是否存在子对称,k=0说明不再有子对称,Pattern[i] != Pattern[k]说明虽然对称,但是对称后面的值和当前的字符值不相等,所以继续递推

while( Pattern[i] != Pattern[k]  &&  k!=0 )

k=prefix[k-1];     //继续递归

if( Pattern[i] == Pattern[k])//找到了这个子对称,或者是直接继承了前面的对称性,这两种都在前面的基础上++

prefix[i]=k+1;

else

prefix[i]=0;       //如果遍历了所有子对称都无效,说明这个新字符不具有对称性,清0

}

}

通过这个说明,估计能够理解KMP的next求法原理了,剩下的就很简单了。我自己也有点晕了,实在不喜欢那些数学公式,所以用形象逻辑思维方法总结了一下。

////////

KMP还有一种写法:这个写法是经过N个人优化的:-----------------------------??????

 1 int  j = -1,  i = 0;
2 next[0] = -1;
3 while(i < len)
4 {
5 if(j == -1 || ss[i] == ss[j])
6 {
7
8 i++;
9 j++;
10 next[i] = j;
11 }
12 else
13 {
14 j = next[j];
15 }
16 }

转载-KMP算法前缀数组优雅实现的更多相关文章

  1. POJ-2752(KMP算法+前缀数组的应用)

    Seek the Name, Seek the Fame POJ-2752 本题使用的算法还是KMP 最主要的片段就是前缀数组pi的理解,这里要求解的纸盒pi[n-1]有关,但是还是需要使用一个循环来 ...

  2. KMP算法&next数组总结

    http://www.cnblogs.com/yjiyjige/p/3263858.html KMP算法应该是每一本<数据结构>书都会讲的,算是知名度最高的算法之一了,但很可惜,我大二那年 ...

  3. KMP算法 Next数组详解

    题面 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果你不知道这是什么意思也不要问,去百 ...

  4. 第4章学习小结_串(BF&KMP算法)、数组(三元组)

    这一章学习之后,我想对串这个部分写一下我的总结体会. 串也有顺序和链式两种存储结构,但大多采用顺序存储结构比较方便.字符串定义可以用字符数组比如:char c[10];也可以用C++中定义一个字符串s ...

  5. 【文文殿下】浅谈KMP算法next数组与循环节的关系

    KMP算法 KMP算法是一种字符串匹配算法,他可以在O(n+m)的时间内求出一个模式串在另一个模式串下出现的次数. KMP算法是利用next数组进行自匹配,然后来进行匹配的. Next数组 Next数 ...

  6. 转载 - KMP算法

    出处:http://www.cnblogs.com/dolphin0520/archive/2011/08/24/2151846.html KMP算法 在介绍KMP算法之前,先介绍一下BF算法. 一. ...

  7. 数据结构之KMP算法next数组

    我们要找到一个短字符串(模式串)在另一个长字符串(原始串)中的起始位置,也就是模式匹配,最关键的是找到next数组.最简单的算法就是用双层循环来解决,但是这种算法效率低,kmp算法是针对模式串自身的特 ...

  8. KMP算法next数组求解

    关于KMP算法,许多教材用的是递推式求解,虽然代码简洁,但是有些不好理解,这里我介绍一种迭代求next数组的方法 KMP算法关键部分就是滑动模式串,我们可以每次滑动一个单位,直到出现可能匹配的情况,此 ...

  9. poj1961(kmp算法next数组应用)

    题目链接:https://vjudge.net/problem/POJ-1961 题意:给定一个长为n的字符串(n<=1e6),对于下标i(2<=i<=n),如果子串s(1...i) ...

随机推荐

  1. Java第一阶段总结

    学习java已经一个多月的时间了,第一阶段总算完成了. 这中间遇到很多问题,通过问同学问学长,收获了很多,但也知道自己和其他同学相差很远.他们java第一阶段只用了不到一个月的时间,而我拖了很长时间, ...

  2. 解决mysql中表字符集gbk,列字符集Latin1,python查询乱码问题

    最近在公司碰到一个异常蛋疼的情况,mysql数据库中,数据库和表的字符集都是'gbk',但是列的字符集却是'latin1',于是蛋疼的事情出现了. 无论我连接字符串的`charset`设置为`gbk` ...

  3. NOSQL Mongo入门学习笔记 - C++连接Mongodb(三)

    OS环境: Centos 7.1 release X86_64 编译环境: G++ 4.8.3 已经成功搭建好了Mongodb,也初步在命令行中的查询与写入数据的基本方法,现在通过C++来连接Mong ...

  4. AndroidManifest.xml文件综合详解(转)

    一,重要性AndroidManifest.xml是Android应用程序中最重要的文件之一.它是Android程序的全局配置文件,是每个 android程序中必须的文件.它位于我们开发的应用程序的根目 ...

  5. Firefly安装说明 与 常见问题

    原地址:http://bbs.gameres.com/thread_223688.html 第三方库依赖:    twisted, python-memcached ftp://ftp.tummy.c ...

  6. 2013 Multi-University Training Contest 5 k-th point

    刚开始我也不知道怎么做,后来慢慢就推出来了…… 对于样例 2 1 0,结果是2/3 2 2 0,结果是4/5 3 2 0,结果是6/7 3 2 1,结果是9/14=6/7*3/4 …… 之后就会发现每 ...

  7. Linux系统下如何配置SSH?如何开启SSH?

    SSH作为Linux远程连接重要的方式,如何配置安装linux系统的SSH服务,如何开启SSH?下面来看看吧(本例为centos系统演示如何开启SSH服务). 查询\安装SSH服务 1.登陆linux ...

  8. Nginx 实现MySQL的负载均衡

    Nginx属于七层架构,支持的是http协议,本身对tcp协议没有支持.所以不能代理mysql等实现负载均衡.但是lvs这个东西不熟悉,主要是公司的的负载均衡都是nginx所以决定研究一下nginx的 ...

  9. Android Paint中setTextSize

    界面适配的时候发现Paint.setTextSize与TextView.setTextSize传入的单位不一致.Paint.setTextSize传入的单位是px,TextView.setTextSi ...

  10. android的休眠和唤醒流程

    android休眠唤醒流程: power按键事件上报给android系统,最终由windownmanager接收到,当有按键事件时判断是否需要休眠后唤醒系统,然后调用powermanager系统服务去 ...