A. Two Substrings

You are given string s. Your task is to determine if the given string s contains two non-overlapping substrings "AB" and "BA" (the substrings can go in any order).

Input

The only line of input contains a string s of length between 1 and 105 consisting of uppercase Latin letters.

Output

Print "YES" (without the quotes), if string s contains two non-overlapping substrings "AB" and "BA", and "NO" otherwise.

Sample test(s)
input
ABA
output
NO
input
BACFAB
output
YES
input
AXBYBXA
output
NO
Note

In the first sample test, despite the fact that there are substrings "AB" and "BA", their occurrences overlap, so the answer is "NO".

In the second sample test there are the following occurrences of the substrings: BACFAB.

In the third sample test there is no substring "AB" nor substring "BA".

注意细节、比如:ABACAB

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
#define N 100010 int main()
{
char s[N];
char s1[]="AB",s2[]="BA";
while(scanf("%s",s)!=EOF)
{
bool flag=;
int len=strlen(s);
if(len<=) flag=;
else{
char *p=strstr(s,s1);
char *q=strstr(s,s2);
if(p==NULL || q==NULL) flag=;
else{
if(strstr(p+,s2) || strstr(q+,s1)) ;
else flag=;
}
}
if(!flag) cout<<"NO\n";
else cout<<"YES\n";
}
return ;
}
B. Preparing Olympiad

You have n problems. You have estimated the difficulty of the i-th one as integer ci. Now you want to prepare a problemset for a contest, using some of the problems you've made.

A problemset for the contest must consist of at least two problems. You think that the total difficulty of the problems of the contest must be at least l and at most r. Also, you think that the difference between difficulties of the easiest and the hardest of the chosen problems must be at least x.

Find the number of ways to choose a problemset for the contest.

Input

The first line contains four integers nlrx (1 ≤ n ≤ 15, 1 ≤ l ≤ r ≤ 109, 1 ≤ x ≤ 106) — the number of problems you have, the minimum and maximum value of total difficulty of the problemset and the minimum difference in difficulty between the hardest problem in the pack and the easiest one, respectively.

The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 106) — the difficulty of each problem.

Output

Print the number of ways to choose a suitable problemset for the contest.

Sample test(s)
input
3 5 6 1
1 2 3
output
2
input
4 40 50 10
10 20 30 25
output
2
input
5 25 35 10
10 10 20 10 20
output
6
Note

In the first example two sets are suitable, one consisting of the second and third problem, another one consisting of all three problems.

In the second example, two sets of problems are suitable — the set of problems with difficulties 10 and 30 as well as the set of problems with difficulties 20 and 30.

In the third example any set consisting of one problem of difficulty 10 and one problem of difficulty 20 is suitable.

暴力即可

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
#define INF 1<<30
#define N 50 int ans;
int n,l,r,x;
int c[N]; void dfs(int id,int sum,int mx,int mi,int num){
if(id>n){
if(sum>=l&&sum<=r&&num>=&&mx-mi>=x)ans++;
return;
}
dfs(id+,sum+c[id],max(mx,c[id]),min(mi,c[id]),num+);
dfs(id+,sum,mx,mi,num);
}
int main()
{
ans=;
cin>>n>>l>>r>>x;
for(int i=;i<=n;++i)cin>>c[i];
dfs(,,,INF,);
cout<<ans<<endl;
return ;
}
C. Divisibility by Eight

You are given a non-negative integer n, its decimal representation consists of at most 100 digits and doesn't contain leading zeroes.

Your task is to determine if it is possible in this case to remove some of the digits (possibly not remove any digit at all) so that the result contains at least one digit, forms a non-negative integer, doesn't have leading zeroes and is divisible by 8. After the removing, it is forbidden to rearrange the digits.

If a solution exists, you should print it.

Input

The single line of the input contains a non-negative integer n. The representation of number n doesn't contain any leading zeroes and its length doesn't exceed 100 digits.

Output

Print "NO" (without quotes), if there is no such way to remove some digits from number n.

Otherwise, print "YES" in the first line and the resulting number after removing digits from number n in the second line. The printed number must be divisible by 8.

If there are multiple possible answers, you may print any of them.

Sample test(s)
input
3454
output
YES
344
input
10
output
YES
0
input
111111
output
NO

一个数是8的倍数,那么该数模1000得到的最后三位组成的数字一定是8的倍数
所以暴力枚举最后三位即可

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
using namespace std;
#define INF 0x7fffffff
#define N 110 char s[N];
int num[N]; int main()
{
scanf("%s", s);
int len = strlen(s);
for (int i = ; i < len; i++) num[i] = s[i] - '';
//
for (int i = ; i < len; i++) {
if (num[i] % == ) {
printf("YES\n");
printf("%d\n", num[i]);
return ;
}
}
//
for (int i = ; i < len; i++) {
for (int j = i + ; j < len; j++) {
int sum = num[i] * + num[j];
if (sum % == ) {
printf("YES\n");
printf("%d\n", sum);
return ;
}
}
}
//3+
if (len >= ) {
for (int i = ; i < len; i++) {
for (int j = i + ; j < len; j++) {
for (int k = j + ; k < len; k++) {
int sum = num[i] * + num[j] * + num[k];
if (sum % == ) {
printf("YES\n");
printf("%d\n", sum);
return ;
}
}
}
}
}
printf("NO\n");
return ;
}
D. Regular Bridge

An undirected graph is called k-regular, if the degrees of all its vertices are equal k. An edge of a connected graph is called a bridge, if after removing it the graph is being split into two connected components.

Build a connected undirected k-regular graph containing at least one bridge, or else state that such graph doesn't exist.

Input

The single line of the input contains integer k (1 ≤ k ≤ 100) — the required degree of the vertices of the regular graph.

Output

Print "NO" (without quotes), if such graph doesn't exist.

Otherwise, print "YES" in the first line and the description of any suitable graph in the next lines.

The description of the made graph must start with numbers n and m — the number of vertices and edges respectively.

Each of the next m lines must contain two integers, a and b (1 ≤ a, b ≤ na ≠ b), that mean that there is an edge connecting the vertices a and b. A graph shouldn't contain multiple edges and edges that lead from a vertex to itself. A graph must be connected, the degrees of all vertices of the graph must be equal k. At least one edge of the graph must be a bridge. You can print the edges of the graph in any order. You can print the ends of each edge in any order.

The constructed graph must contain at most 106 vertices and 106 edges (it is guaranteed that if at least one graph that meets the requirements exists, then there also exists the graph with at most 106 vertices and at most 106 edges).

Sample test(s)
input
1
output
YES
2 1
1 2
Note

In the sample from the statement there is a suitable graph consisting of two vertices, connected by a single edge.

求至少有一个桥的K-正则图。

如图,可以看出偶数无解、代码略(hen)搓

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
using namespace std;
#define INF 0x7fffffff
#define N 110 int main()
{
int k;
while(scanf("%d",&k)!=EOF)
{
if(k%==) printf("NO\n");
else
{
printf("YES\n");
if(k==)
{
printf("2 1\n");
printf("1 2\n");
continue;
}
int s1=,s2=*k;
printf("%d %d\n",*k-,*(k-)+*(k-)*(k-)+(k-)+);
printf("%d %d\n",s1,s2);
for(int i=s1+;i<s1+k;i++) printf("%d %d\n",s1,i);
for(int i=s1+;i<s1+k;i++){
for(int j=s1+k;j<s1+*k-;j++){
printf("%d %d\n",i,j);
}
}
for(int i=s1+k;i<s1+*k-;i+=) printf("%d %d\n",i,i+);
for(int i=s2+;i<s2+k;i++) printf("%d %d\n",s2,i);
for(int i=s2+;i<s2+k;i++){
for(int j=s2+k;j<s2+*k-;j++){
printf("%d %d\n",i,j);
}
}
for(int i=s2+k;i<s2+*k-;i+=) printf("%d %d\n",i,i+);
}
}
return ;
}
E. Brackets in Implications

Implication is a function of two logical arguments, its value is false if and only if the value of the first argument is true and the value of the second argument is false.

Implication is written by using character '', and the arguments and the result of the implication are written as '0' (false) and '1' (true). According to the definition of the implication:

When a logical expression contains multiple implications, then when there are no brackets, it will be calculated from left to fight. For example,

.

When there are brackets, we first calculate the expression in brackets. For example,

.

For the given logical expression  determine if it is possible to place there brackets so that the value of a logical expression is false. If it is possible, your task is to find such an arrangement of brackets.

Input

The first line contains integer n (1 ≤ n ≤ 100 000) — the number of arguments in a logical expression.

The second line contains n numbers a1, a2, ..., an (), which means the values of arguments in the expression in the order they occur.

Output

Print "NO" (without the quotes), if it is impossible to place brackets in the expression so that its value was equal to 0.

Otherwise, print "YES" in the first line and the logical expression with the required arrangement of brackets in the second line.

The expression should only contain characters '0', '1', '-' (character with ASCII code 45), '>' (character with ASCII code 62), '(' and ')'. Characters '-' and '>' can occur in an expression only paired like that: ("->") and represent implication. The total number of logical arguments (i.e. digits '0' and '1') in the expression must be equal to n. The order in which the digits follow in the expression from left to right must coincide with a1, a2, ..., an.

The expression should be correct. More formally, a correct expression is determined as follows:

  • Expressions "0", "1" (without the quotes) are correct.
  • If v1, v2 are correct, then v1->v2 is a correct expression.
  • If v is a correct expression, then (v) is a correct expression.

The total number of characters in the resulting expression mustn't exceed 106.

If there are multiple possible answers, you are allowed to print any of them.

Sample test(s)
input
4
0 1 1 0
output
YES
(((0)->1)->(1->0))
input
2
1 1
output
NO
input
1
0
output
YES
0

显然末尾必须为0
那么如果能这样:0/1 -> 1 ->0 = 0,就一定行
分为两种情况:
A. 如果a[n-1]本身就是1,那么显然可以
B. 如果a[n-1]为0,那么前面的1和0运算得到0,需要前面有1一个0来让0变成1
比如:1 0 1 1 1 0 0 :1->(0->(1->(1->(1->0))))->0

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
#define N 100010 int main()
{
int a[N],n;
while(scanf("%d",&n)!=EOF)
{
for(int i=;i<=n;i++) scanf("%d",&a[i]);
if(a[n]){
printf("NO\n");
continue;
}
//
if(n==)
{
printf("YES\n");
printf("0\n");
}
//
else if(n==)
{
if(a[]){
printf("YES\n");
printf("1->0\n");
}
else{
printf("NO\n");
}
}
//3+
else{
if(a[n-]){
printf("YES\n");
for(int i=;i<=n-;i++) printf("%d->",a[i]);
printf("%d",a[n]);
}
else{
int fg=-;
for(int i=n-;i>=;i--) if(!a[i]) {fg=i;break;}
if(fg==-) {printf("NO\n");continue;}
printf("YES\n");
for(int i=;i<fg;i++) printf("%d->",a[i]);
for(int i=fg;i<=n-;i++) printf("(%d->",a[i]);
printf("%d",a[n-]);
for(int i=fg;i<=n-;i++) printf(")");
printf("->%d\n",);
}
}
}
return ;
}

Codeforces Round #306 (Div. 2)的更多相关文章

  1. 数学/找规律/暴力 Codeforces Round #306 (Div. 2) C. Divisibility by Eight

    题目传送门 /* 数学/暴力:只要一个数的最后三位能被8整除,那么它就是答案:用到sprintf把数字转移成字符读入 */ #include <cstdio> #include <a ...

  2. DFS Codeforces Round #306 (Div. 2) B. Preparing Olympiad

    题目传送门 /* DFS: 排序后一个一个出发往后找,找到>r为止,比赛写了return : */ #include <cstdio> #include <iostream&g ...

  3. 水题 Codeforces Round #306 (Div. 2) A. Two Substrings

    题目传送门 /* 水题:遍历一边先找AB,再BA,再遍历一边先找BA,再AB,两种情况满足一种就YES */ #include <cstdio> #include <iostream ...

  4. Codeforces Round #306 (Div. 2) E. Brackets in Implications 构造

    E. Brackets in Implications Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/conte ...

  5. Codeforces Round #306 (Div. 2) D. Regular Bridge 构造

    D. Regular Bridge Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/550/pro ...

  6. Codeforces Round #306 (Div. 2) C. Divisibility by Eight 暴力

    C. Divisibility by Eight Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/ ...

  7. Codeforces Round #306 (Div. 2) B. Preparing Olympiad dfs

    B. Preparing Olympiad Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/550 ...

  8. Codeforces Round #306 (Div. 2) A. Two Substrings 水题

    A. Two Substrings Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/550/pro ...

  9. Codeforces Round #306 (Div. 2) 550A Two Substrings

    链接:http://codeforces.com/contest/550/problem/A 这是我第一次玩cf这种比赛,前面做了几场练习,觉得div2的前面几个还是比较水的. 所以看到这道题我果断觉 ...

  10. Codeforces Round #306 (Div. 2) A B C

    题目链接:http://codeforces.com/contest/550 A 暴力一发. 代码: #include <iostream> #include <stdio.h> ...

随机推荐

  1. Pl/sql 导入数据错位问题

    在查询列的时候 多查询一列就可以了 当然是要在所有列对应的情况下 把第一列的 前追加一列 这样就不会错位了 例如如下图

  2. C语言数据结构之栈:中缀表达式的计算

    *注:本人技术不咋的,就是拿代码出来和大家看看,代码漏洞百出,完全没有优化,主要看气质,是吧 学了数据结构——栈,当然少不了习题.习题中最难的也是最有意思的就是这个中缀表达式的计算了(可以算+-*/和 ...

  3. nodejs的模块系统(实例分析exprots和module.exprots)

    前言:工欲善其事,必先利其器.模块系统是nodejs组织管理代码的利器也是调用第三方代码的途径,本文将详细讲解nodejs的模块系统.在文章最后实例分析一下exprots和module.exprots ...

  4. jQuery uploadify-v3.1 批量上传

    引用: <link href="/UI.Web.CRM.Main/jQuery.Uploadify/uploadify.css" rel="stylesheet&q ...

  5. EXTJS 4.2 资料 控件之Window窗体添加html

    //这里要跳转页面 var subWindow = new Ext.Window({ title: '窗口', width: width, height: height, modal: true,// ...

  6. 两年的坚持,最后还是决定将ISoft开源

    还记得2011年9月份,我在上大四,本来想着考研能上个好点的学校,可我怎么就不愿去自习室上自习.每天晚上睡觉前都告诉自己明天早晨一定早起去上自习,但又每次醒来都不想起床啊,懒,没办法.睡到不想再睡了才 ...

  7. mybatis显示sql语句 log4j.properties配置文件

    log4j.properties配置如下: 将ibatis log4j运行级别调到DEBUG可以在控制台打印出ibatis运行的sql语句,方便调试: ### 设置Logger输出级别和输出目的地 # ...

  8. 一种高斯模糊渐变动画的实现-b

    关于高斯模糊的方式有很多种,但是如果需要模糊渐变,那么对这种高斯模糊算法的性能要求是比较高的,今天这里重点不讨论算法,只是提供一个动画实现的思路.动画效果如下: 高斯模糊渐变动画 //高斯模糊 -(U ...

  9. 使用Pod集成Bugtags填坑记

    最近某朋友的朋友的创业公司新出了一个工具叫Bugtags,说是可以让APP测试变得so easy,于是动手来做1.1.0的版本集成,先把WEB首页贴在下面,感兴趣的同学可以去look一下:https: ...

  10. 初试docker以及搭建mysql on docker

    前一阵阅读了google的borg论文,在最后的related works和总结中发现了kubernetes.从论文中了解的kubernetes这个东西很有意思,按照论文所说,它的实现有希望解决an ...