内存池可有效降低动态申请内存的次数,减少与内核态的交互,提升系统性能,减少内存碎片,增加内存空间使用率,避免内存泄漏的可能性,这么多的优点,没有理由不在系统中使用该技术。

内存池分类:

1、              不定长内存池。典型的实现有apr_pool、obstack。优点是不需要为不同的数据类型创建不同的内存池,缺点是造成分配出的内存不能回收到池中。这是由于这种方案以session为粒度,以业务处理的层次性为设计基础。

2、             定长内存池。典型的实现有LOKI、BOOST。特点是为不同类型的数据结构分别创建内存池,需要内存的时候从相应的内存池中申请内存,优点是可以在使用完毕立即把内存归还池中,可以更为细粒度的控制内存块。
    与变长的相比,这种类型的内存池更加通用,另一方面对于大量不同的数据类型环境中,会浪费不少内存。但一般系统主要的数据结构都不会很多,并且都是重复申请释放使用,这种情况下,定长内存池的这点小缺点可以忽略了。

Boost库的pool提供了一个内存池分配器,用于管理在一个独立的、大的分配空间里的动态内存分配。Boost库的pool主要适用于快速分配同样大小的内存块,尤其是反复分配和释放同样大小的内存块的情况。使用pool内存池主要有以下两个优点:

  1. 能够有效地管理许多小型对象的分配和释放工作,避免了自己去管理内存而产生的内存碎片和效率低下问题。

  2.  告别程序内存泄漏的烦恼,pool库会在内部对内存自动进行管理,避免了程序员一不小心而造成的内存泄漏问题。

pool库主要提供了四种内存池接口,分别是pool、object_pool、singleton_pool和pool_allocator/fast_pool_allocator。

1)pool

基本的定长内存池

#include <boost/pool/pool.hpp>

typedef struct student_st

{

char name[10];

int age;

}CStudent;

int main()

{

boost::pool<> student_pool(sizeof(CStudent));

CStudent * const obj=(CStudent *)student_pool.malloc();

student_pool.free(obj);

return 0;

}

pool的模版参数只有一个分配子类型,boost提供了两种default_user_allocator_new_delete/default_user_allocator_malloc_free,指明申请释放内存的时候使用new/delete,还是malloc/free,默认是default_user_allocator_new_delete。构造函数有2个参数:nrequested_size,nnext_size。nrequested_size是block的大小(因为void*保存序号,因此boost内置了block的最小值,nrequested_size过小则取内置值),nnext_size是simple_segregated_storage中内存不足的时候,申请的block数量,默认是32。最全面的实例化pool类似这样:boost::pool<boost::default_user_allocator_malloc_free> student_pool(sizeof(CStudent),255);

pool提供的函数主要有:

malloc/free  基于add_block/malloc/free实现,高效

ordered_malloc/ordered_free  基于add_ordered_block/malloc/ordered_free实现,在pool中无任何意义,切勿使用。

release_memory/purge_memory 前者释放池中未使用内存,后者释放池中所有内存。另池析构也会释放内存

2)object_pool

对象内存池,这是最失败的一个内存池设计。

#include <boost/pool/object_pool.hpp>

class A{

public:

A():data_(0){}

private:

int data_;

};

int main()

{

boost::object_pool<A> obj_pool;

A *const pA=obj_pool.construct();

obj_pool.destroy(pA);

return 0;

}

object_pool继承至pool,有两个模版参数,第一个就是对象类型,第二个是分配子类型,默认同pool是default_user_allocator_new_delete。构造函数参数只有nnext_size,意义以及默认值同pool。最全面的实例化object_pool类似这样:boost::pool<A,boost::default_user_allocator_malloc_free> obj_pool(255);

object_pool提供的函数主要有(继承至父类的略): malloc/free 复写pool的malloc/free,add_ordered_block/malloc/ordered_free实现

construct/destroy 基于本类的malloc/free实现,额外调用默认构造函数和默认析构函数。

~object_pool  单独拿出这个说下,若析构的时候有对象未被destroy,可以检测到,释放内存前对其执行destroy

为什么boost::object_pool要设计成这样?能调用构造函数和析构函数显然不是boost::object_pool类设计的出发点,因为构造函数只能执行默认构造函数(首次发表错误:可以调用任意的构造函数,参见代码文件:boost/pool/detail/pool_construct.inc和boost/pool/detail/pool_construct_simple.inc,感谢eXile指正),近似于无,它的重点是内存释放时候的清理工作,这个工作默认的析构函数就足够了。apr_pool内存池中就可以注册内存清理函数,在释放内存的时刻执行关闭文件描述符、关闭socket等操作。boost::object_pool也想实现同样的功能,因此设计了destroy这个函数,而同时为了防止用户遗漏掉这个调用,而又在内存池析构的时候进行了检测回收。为了这个目的而又不至于析构object_pool的时间复杂度是O(n平方),boost::object_pool付出了沉重的代价,在每次的destoy都执行排序功能,时间复杂度O(n),最后析构的时间复杂度是O(n),同样为了这个目的,从simple_segregated_storage增加了add_ordered_block/ordered_free,pool增加了ordered_malloc/ordered_free等累赘多余的功能。

基于上面讨论的原因,boost::object_pool被设计成了现在的样子,成了一个鸡肋类。类的设计者似乎忘记了内存池使用的初衷,忘记了内存池中内存申请释放的频率很高,远远大于内存池对象的析构。如果你依然想使用类似于此的内存清理功能,可以在boost::object_pool上修改,不复写malloc/free即可,重写object_pool的析构,简单释放内存就好,因此析构object_pool前不要忘记调用destroy,这也是使用placement new默认遵守的规则,或者保持以前的析构函数,牺牲析构时的性能。placement new的作用是为已经申请好的内存调用构造函数,使用流程为(1)申请内存buf(2)调用placement new:new(buf)construtor()(3)调用析构destructor()(4)释放内存buf。#include<new>可以使用placement new。

3)singleton_pool

pool的加锁版本。

#include <boost/pool/singleton_pool.hpp>

typedef struct student_st

{

char name[10];

int age;

}CStudent;

typedef struct singleton_pool_tag{}singleton_pool_tag;

int main()

{

typedef boost::singleton_pool<singleton_pool_tag,sizeof(CStudent)>  global;

CStudent * const df=(CStudent *)global::malloc();

global::free(df);

return 0;

}

singleton_pool为单例类,是对pool的加锁封装,适用于多线程环境,其中所有函数都是静态类型。它的模版参数有5个,tag:标记而已,无意义;RequestedSize:block的长度;UserAllocator:分配子,默认还是default_user_allocator_new_delete;Mutex:锁机制,默认值最终依赖于系统环境,linux下是pthread_mutex,它是对pthread_mutex_t的封装;NextSize:内存不足的时候,申请的block数量,默认是32。最全面的使用singleton_pool类似这样:typedef boost::singleton_pool<singleton_pool_tag,sizeof(CStudent),default_user_allocator_new_delete,details::pool::default_mutex,200> global;

它暴露的函数和pool相同。

4)pool_allocator/fast_pool_allocator

stl::allocator的替换方案。两者都是基于singleton_pool实现,实现了stl::allocator要求的接口规范。两者的使用相同,区别在于pool_allocator的内部实现调用了ordered_malloc和ordered_free,可以满足对大量的连续内存块的分配请求。fast_pool_allocator 的内部实现调用了malloc和free,比较适合于一次请求单个大内存块的情况,但也适用于通用分配,不过具有一些性能上的缺点。因此推荐使用后者。

#include <boost/pool/pool_alloc.hpp>

#include <vector>

typedef struct student_st

{

char name[10];

int age;

}CStudent;

int main()

{

std::vector<CStudent *,boost::fast_pool_allocator<CStudent *> > v(8);

CStudent *pObj=new CStudent();

v[1]=pObj;

boost::singleton_pool<boost::fast_pool_allocator_tag,sizeof(CStudent *)>::purge_memory();

return 0;

}

fast_pool_allocator的模版参数有四个:类型,分配子,锁类型,内存不足时的申请的block数量,后三者都有默认值,不再说了。它使用的singleton_pool的tag是boost::fast_pool_allocator_tag。

总结:boost::pool小巧高效,多多使用,多线程环境下使用boost::singleton_pool,不要使用两者的ordered_malloc/ordered_free函数。boost::object_pool不建议使用,可以改造后使用。pool_allocator/fast_pool_allocator推荐使用后者。

参考资料:

boost官方网站: http://www.boost.org/

定长内存池之BOOST::pool的更多相关文章

  1. 不定长内存池之apr_pool

    内存池可有效降低动态申请内存的次数,减少与内核态的交互,提升系统性能,减少内存碎片,增加内存空间使用率,避免内存泄漏的可能性,这么多的优点,没有理由不在系统中使用该技术. 内存池分类: 1.      ...

  2. java线程池之newFixedThreadPool定长线程池

    newFixedThreadPool 创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待. 线程池的作用: 线程池作用就是限制系统中执行线程的数量.     根 据系统的环境情况,可以 ...

  3. PythonStudy——Python 内存池机制 (Memory pool mechanism) Pymalloc

    Python是如何进行内存管理-内存池机制 Pymalloc Python引用了一个内存池(memory pool)机制,即Pymalloc机制(malloc:n.分配内存),用于对小块内存的申请和释 ...

  4. boost pool 和 object_pool

    内存池(Memory Pool)是一种内存分配方式.        通常我们习惯直接使用new.malloc等API申请分配内存,这样做的缺点在于:由于所申请内存块的大小不定,当频繁使用时会造成大量的 ...

  5. C++ placement new与内存池

    参考:https://blog.csdn.net/Kiritow/article/details/51314612 有些时候我们需要能够长时间运行的程序(例如监听程序,服务器程序)对于这些7*24运行 ...

  6. 重写boost内存池

    最近在写游戏服务器网络模块的时候,需要用到内存池.大量玩家通过tcp连接到服务器,通过大量的消息包与服务器进行交互.因此要给每个tcp分配收发两块缓冲区.那么这缓冲区多大呢?通常游戏操作的消息包都很小 ...

  7. Boost内存池使用与测试

    目录 Boost内存池使用与测试 什么是内存池 内存池的应用场景 安装 内存池的特征 无内存泄露 申请的内存数组没有被填充 任何数组内存块的位置都和使用operator new[]分配的内存块位置一致 ...

  8. boost的线程池和内存池 智能指针

    内存池为boost自带的 #include <boost/pool/pool.hpp> 或者另外一个开源的库: nedmalloc 一个高效率的库 线程池需要下载另外一个开源库 http: ...

  9. boost::pool 库速记

    使用示例 #include <functional> #include <iostream> #include <boost/pool/pool.hpp> #inc ...

随机推荐

  1. Servlet之编码过滤

    创建CharactorFilter类,实现javax.servlet.Filter接口: package com.caiduping; import java.io.IOException; impo ...

  2. jQuery 的插件 dataTables

    ---恢复内容开始--- jQuery 的插件 dataTables 是一个优秀的表格插件,提供了针对表格的排序.浏览器分页.服务器分页.筛选.格式化等功能.dataTables 的网站上也提供了大量 ...

  3. 第八篇、微信小程序-progress组件

    主要属性: 效果图: ml: <View > <!--百分比是30,并在进度条右侧显示百分比--> <Text class="text-style"& ...

  4. Cocos2d-x中Vector<T>容器以及实例介绍

    Vector<T> 是Cocos2d-x 3.x推出的列表容器,因此它所能容纳的是Ref及子类所创建的对象指针,其中的T是模板,表示能够放入到容器中的类型,在Cocos2d-x 3.x中T ...

  5. Cocos2d-x加速度计实例:运动的小球

    下面我们通过一个实例介绍一下如果通过层加速度计事件实现访问加速度计.该实例场景如下图所示,场景中有一个小球,当我们把移动设备水平放置,屏幕向上,然后左右晃动移动设备来改变小球的位置. 下面我们再看看具 ...

  6. Cocos2d-x开发实例介绍特效演示

    下面我们通过一个实例介绍几个特效的使用,这个实例下图所示,下图是一个操作菜单场景,选择菜单可以进入到下图动作场景,在下图动作场景中点击Go按钮可以执行我们选择的特性动作,点击Back按钮可以返回到菜单 ...

  7. 如何把网站及数据库部署到Windows Azure

    http://edi.wang/Post/2014/1/1/deploying-website-with-db-to-azure-custom-domain

  8. jqGrid API 相关

    取消所有选中的行: $("jqgridtableid").trigger("reloadGrid"): 设定选中行,可设定多行选中: $("jqgri ...

  9. 3月3日[Go_deep]Populating Next Right Pointers in Each Node

    原题:Populating Next Right Pointers in Each Node 简单的链表二叉树增加Next节点信息,没什么坑.不过还是WA了两次,还是有点菜,继续做,另外leetcod ...

  10. 【原】Oracle查询指定表里的触发器

    select * from all_triggers WHERE table_name='表名'