Ranking SVM 简介

排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank简介)。LTR有三种主要的方法:PointWise,PairWise,ListWise。Ranking SVM算法是PointWise方法的一种,由R. Herbrich等人在2000提出, T. Joachims介绍了一种基于用户Clickthrough数据使用Ranking SVM来进行排序的方法(SIGKDD, 2002)。

1. Ranking SVM的主要思想

Ranking SVM是一种Pointwise的排序算法, 给定查询q, 文档d1>d2>d3(亦即文档d1比文档d2相关, 文档d2比文档d3相关, x1, x2, x3分别是d1, d2, d3的特征)。为了使用机器学习的方法进行排序,我们将排序转化为一个分类问题。我们定义新的训练样本, 令x1-x2, x1-x3, x2-x3为正样本,令x2-x1, x3-x1, x3-x2为负样本, 然后训练一个二分类器(支持向量机)来对这些新的训练样本进行分类,如下图所示:

左图中每个椭圆代表一个查询, 椭圆内的点代表那些要计算和该查询的相关度的文档, 三角代表很相关, 圆圈代表一般相关, 叉号代表不相关。我们把左图中的单个的文档转换成右图中的文档对(di, dj), 实心方块代表正样本, 亦即di>dj, 空心方块代表负样本, 亦即di<dj

2. Ranking SVM

将排序问题转化为分类问题之后, 我们就可以使用常用的机器学习方法解决该问题。 Ranking SVM使用SVM来进行分类:

其中w为参数向量, x为文档的特征,y为文档对之间的相对相关性, ξ为松弛变量。

3. 使用Clickthrough数据作为训练数据

T. Joachims提出了一种非常巧妙的方法, 来使用Clickthrough数据作为Ranking SVM的训练数据。

假设给定一个查询"Support Vector Machine", 搜索引擎的返回结果为

其中1, 3, 7三个结果被用户点击过, 其他的则没有。因为返回的结果本身是有序的, 用户更倾向于点击排在前面的结果, 所以用户的点击行为本身是有偏(Bias)的。为了从有偏的点击数据中获得文档的相关信息, 我们认为: 如果一个用户点击了a而没有点击b, 但是b在排序结果中的位置高于a, 则a>b。

所以上面的用户点击行为意味着: 3>2, 7>2, 7>4, 7>5, 7>6。

4. Ranking SVM的开源实现

H. Joachims的主页上有Ranking SVM的开源实现。

数据的格式与LIBSVM的输入格式比较相似, 第一列代表文档的相关性, 值越大代表越相关, 第二列代表查询, 后面的代表特征

3 qid:1 1:1 2:1 3:0 4:0.2 5:0 # 1A
2 qid:1 1:0 2:0 3:1 4:0.1 5:1 # 1B
1 qid:1 1:0 2:1 3:0 4:0.4 5:0 # 1C
1 qid:1 1:0 2:0 3:1 4:0.3 5:0 # 1D
1 qid:2 1:0 2:0 3:1 4:0.2 5:0 # 2A
2 qid:2 1:1 2:0 3:1 4:0.4 5:0 # 2B
1 qid:2 1:0 2:0 3:1 4:0.1 5:0 # 2C
1 qid:2 1:0 2:0 3:1 4:0.2 5:0 # 2D
2 qid:3 1:0 2:0 3:1 4:0.1 5:1 # 3A
3 qid:3 1:1 2:1 3:0 4:0.3 5:0 # 3B
4 qid:3 1:1 2:0 3:0 4:0.4 5:1 # 3C
1 qid:3 1:0 2:1 3:1 4:0.5 5:0 # 3D

训练模型和对测试数据进行排序的代码分别为:

./svm_rank_learn path/to/train path/to/model 
 ./svm_classify path/to/test path/to/model path/to/rank_result

参考文献:

[1]. R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. In Advances in Large Margin Classifiers, 2000.

[2]. T. Joachims. Optimizing Search Engines using Clickthrough Data. SIGKDD, 2002.

[3]. Hang Li. A Short Introduction to Learning to Rank.

[4]. Tie-yan Liu. Learning to Rank for Information Retrieval.

[5]. Learning to Rank简介

 
 

Kemaswill 机器学习 数据挖掘 推荐系统 Ranking SVM 简介的更多相关文章

  1. Kemaswill 机器学习 数据挖掘 推荐系统 Python optparser模块简介

      Python optparser模块简介

  2. 【机器学习】Learning to Rank之Ranking SVM 简介

    Learning to Rank之Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning t ...

  3. Learning to Rank之Ranking SVM 简介

    排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank简 ...

  4. 机器学习 数据挖掘 推荐系统机器学习-Random Forest算法简介

    Random Forest是加州大学伯克利分校的Breiman Leo和Adele Cutler于2001年发表的论文中提到的新的机器学习算法,可以用来做分类,聚类,回归,和生存分析,这里只简单介绍该 ...

  5. 机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

    前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考 ...

  6. 机器学习&数据挖掘笔记(常见面试之机器学习算法思想简单梳理)

    机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 前言: 找工作时( ...

  7. [转]机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

    机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 转自http://www.cnblogs.com/tornadomeet/p/3395593.html 前言: 找工作时(I ...

  8. 【机器学习】Learning to Rank 简介

    Learning to Rank 简介 去年实习时,因为项目需要,接触了一下Learning to Rank(以下简称L2R),感觉很有意思,也有很大的应用价值.L2R将机器学习的技术很好的应用到了排 ...

  9. Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱(转)

    原文:http://www.52nlp.cn/python-网页爬虫-文本处理-科学计算-机器学习-数据挖掘 曾经因为NLTK的缘故开始学习Python,之后渐渐成为我工作中的第一辅助脚本语言,虽然开 ...

随机推荐

  1. 用Iconv应对NodeJs对称加密技术在汉字编码与NoSQL的一些坑洞

    ·起因 汉字编码技术在实际应用中总是会存在这样或者那样的问题,尤其是在一些热门NoSQL方面多少会遇到挑战.比方说Cassandra字符集还不直接支持GB2312,要想存储写汉字那可真是麻烦.当然这还 ...

  2. [Unity3D]Unity3D游戏开发Android内嵌视图Unity查看

    ---------------------------------------------------------------------------------------------------- ...

  3. Vim实用小技巧

    Vim实用小技巧 一些网络上质量较高的Vim资料 从我07年接触Vim以来,已经过去了8个年头,期间看过很多的Vim文章,我自己觉得非常不错,而且创作时间也比较近的文章有如下这些. Vim入门 目前为 ...

  4. 多线程学习之二坚不可摧模式Immutable pattern

    Immutable pattern[坚不可摧模式] 一:immutable pattern的参与者--->immutable(不变的)参与者        1.1:immutable参与者是一个 ...

  5. 快速构建Windows 8风格应用16-SettingContract原理及构建

    原文:快速构建Windows 8风格应用16-SettingContract原理及构建 本篇博文主要介绍Setting Contract概述.Setting Contract实现基本原理.如何构建Se ...

  6. Spring IOC之依赖

    一个标准的企业级应用不只有一个对象组成.即使是最简单的引用也会有个相互作用的对象以使最终呈现 在用户面前的是个连贯一致的引用. 1依赖注入 依赖注入(DI)是一个对象定义他们依赖的过程,也就是说他们一 ...

  7. solrnet的使用

    solr与.net系列课程(五)solrnet的使用    solr与.net系列课程(五)solrnet的使用 最近因项目比较忙,所以这篇文章出的比较晚,离上一篇文章已经有半个月的时间了,这节课我们 ...

  8. solr的配置文件及其含义

    solr与.net系列课程(二)solr的配置文件及其含义    solr与.net系列课程(二)solr的配置文件及其含义  本节内容还是不会涉及到.net与数据库的内容,但是不要着急,这都是学时s ...

  9. mysql存储过程及常用函数

    原文:mysql存储过程及常用函数 一.函数 1.数学函数 CEIL()进一取整 SELECT CEIL(1.2);2 FLOOR()舍一取整 SELECT FLOOR(1.9);9 MOD取余数(取 ...

  10. ASP.NET MVC IOC 之AutoFac

    ASP.NET MVC IOC 之AutoFac攻略 一.为什么使用AutoFac? 之前介绍了Unity和Ninject两个IOC容器,但是发现园子里用AutoFac的貌似更为普遍,于是捯饬了两天, ...