给定一个起始点,一个矩形,一个圆,三者互不相交。求从起始点->圆->矩形的最短距离。

自己画一画就知道距离和会是凹函数,不过不是一个凹函数。按与水平向量夹角为圆心角求圆上某点坐标,[0, PI] , [PI, 2*pi]两个区间的点会有两个凹函数。所以要做两次三分才行。

#include<algorithm>
#include<iostream>
#include<fstream>
#include<sstream>
#include<cstring>
#include<cstdlib>
#include<string>
#include<vector>
#include<cstdio>
#include<queue>
#include<stack>
#include<cmath>
#include<map>
#include<set>
#define FF(i, a, b) for(int i=a; i<b; i++)
#define FD(i, a, b) for(int i=a; i>=b; i--)
#define REP(i, n) for(int i=0; i<n; i++)
#define CLR(a, b) memset(a, b, sizeof(a))
#define LL long long
#define PB push_back
#define eps 1e-10
#define debug puts("**debug**");
using namespace std;
const double PI = acos(-1); struct Point
{
double x, y;
Point(double x=0, double y=0):x(x), y(y){}
};
typedef Point Vector; Vector operator + (Vector a, Vector b) { return Vector(a.x+b.x, a.y+b.y); }
Vector operator - (Vector a, Vector b) { return Vector(a.x-b.x, a.y-b.y); }
Vector operator * (Vector a, double p) { return Vector(a.x*p, a.y*p); }
Vector operator / (Vector a, double p) { return Vector(a.x/p, a.y/p); }
bool operator < (const Point& a, const Point& b)
{
return a.x < b.x || (a.x == b.x && a.y < b.y);
}
int dcmp(double x)
{
if(fabs(x) < eps) return 0; return x < 0 ? -1 : 1;
}
bool operator == (const Point& a, const Point& b)
{
return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0;
} double Dot(Vector a, Vector b) { return a.x*b.x + a.y*b.y; }
double Length(Vector a) { return sqrt(Dot(a, a)); }
double Cross(Vector a, Vector b) { return a.x*b.y - a.y*b.x; }
double DistanceToSegment(Point p, Point a, Point b)
{
if(a == b) return Length(p-a);
Vector v1 = b-a, v2 = p-a, v3 = p-b;
if(dcmp(Dot(v1, v2)) < 0) return Length(v2);
else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);
else return fabs(Cross(v1, v2)) / Length(v1);
}
struct Circle
{
Point c;
double r;
Circle(){}
Circle(Point c, double r):c(c), r(r){}
Point point(double a) //根据圆心角求点坐标
{
return Point(c.x+cos(a)*r, c.y+sin(a)*r);
}
}o; Point p, p1, p2, p3, p4, s;
double a, b, c, d; double Calc(double x)
{
p = o.point(x);
double d1 = DistanceToSegment(p, p1, p2),
d2 = DistanceToSegment(p, p2, p3),
d3 = DistanceToSegment(p, p3, p4),
d4 = DistanceToSegment(p, p4, p1);
//点p到矩形最近距离加上s到p距离
return min(min(d1, d2), min(d3, d4)) + Length(s-p);
} double solve()
{
double L, R, m, mm, mv, mmv;
L = 0; R = PI;
while (L + eps < R)
{
m = (L + R) / 2;
mm = (m + R) / 2;
mv = Calc(m);
mmv = Calc(mm);
if (mv <= mmv) R = mm; //三分法求最大值时改为mv>=mmv
else L = m;
}
double ret = Calc(L);
L = PI; R = 2*PI;
while (L + eps < R)
{
m = (L + R) / 2;
mm = (m + R) / 2;
mv = Calc(m);
mmv = Calc(mm);
if (mv <= mmv) R = mm;
else L = m;
}
return min(ret, Calc(L));
} int main()
{
while(scanf("%lf%lf", &s.x, &s.y))
{
if(s.x == 0 && s.y == 0) break;
scanf("%lf%lf%lf", &o.c.x, &o.c.y, &o.r);
scanf("%lf%lf%lf%lf", &a, &b, &c, &d);
//确定矩形四个点坐标,左上点开始 逆时针
double maxx, maxy, minx, miny;
maxx = max(a, c); maxy = max(b, d);
minx = min(a, c); miny = min(b, d);
p1 = Point(minx, maxy);
p2 = Point(minx, miny);
p3 = Point(maxx, miny);
p4 = Point(maxx, maxy);
double ans = solve();
printf("%.2f\n", ans);
}
return 0;
}

hdu 4454 Stealing a Cake(三分法)的更多相关文章

  1. hdu 4454 Stealing a Cake 三分法

    很容易想到三分法求解,不过要分别在0-pi,pi-2pi进行三分. 另外也可以直接暴力枚举…… 代码如下: #include<iostream> #include<stdio.h&g ...

  2. hdu 4454 Stealing a Cake(三分之二)

    pid=4454" target="_blank" style="">题目链接:hdu 4454 Stealing a Cake 题目大意:给定 ...

  3. hdu 4454 Stealing a Cake (三分)

    Stealing a Cake Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. HDU 4454 Stealing a Cake(枚举角度)

    题目链接 去年杭州现场赛的神题..枚举角度..精度也不用注意.. #include <iostream> #include <cstdio> #include <cstr ...

  5. HDU 4454 Stealing a Cake --枚举

    题意: 给一个点,一个圆,一个矩形, 求一条折线,从点出发,到圆,再到矩形的最短距离. 解法: 因为答案要求输出两位小数即可,精确度要求不是很高,于是可以试着爆一发,暴力角度得到圆上的点,然后求个距离 ...

  6. hdu 4454 Stealing a Cake

    简单的计算几何: 可以把0-2*pi分成几千份,然后找出最小的: 也可以用三分: #include<cstdio> #include<cmath> #include<al ...

  7. HDU 4454 - Stealing a Cake(三分)

    我比较快速的想到了三分,但是我是从0到2*pi区间进行三分,并且漏了一种点到边距离的情况,一直WA了好几次 后来画了下图才发现,0到2*pi区间内是有两个极值的,每个半圆存在一个极值 以下是代码 #i ...

  8. hdu 4454 Stealing a Cake(计算几何:最短距离、枚举/三分)

    题意:已知起点.圆.矩形,要求计算从起点开始,经过圆(和圆上任一点接触即可),到达矩形的路径的最短距离.(可以穿过园). 分析:没什么好的方法,凭感觉圆上的每个点对应最短距离,应该是一个凸函数,用三分 ...

  9. hdu 4771 Stealing Harry Potter&#39;s Precious(bfs)

    题目链接:hdu 4771 Stealing Harry Potter's Precious 题目大意:在一个N*M的银行里,贼的位置在'@',如今给出n个宝物的位置.如今贼要将全部的宝物拿到手.问最 ...

随机推荐

  1. Apriori算法实现

    Apriori算法原理:http://blog.csdn.net/kingzone_2008/article/details/8183768 import java.util.HashMap; imp ...

  2. 全面解读WM_NOTIFY

    VC中的消息的分类有3种:窗口消息.命令消息和控件通知消息,我们这里要谈的是最后一种:控件通知消息. 控件通知消息,是指这样一种消息,一个窗口内的子控件发生了一些事情,需要通知父窗口.通知消息只适用于 ...

  3. 使用SetLocaleInfo设置时间后必须调用广播WM_SETTINGCHANGE,通知其他程序格式已经更改

    uses messages; Procedure SetDateFormat; //设置系统日期格式var buf:pchar; i:integer; p:DWORD;begin getmem(buf ...

  4. ViEmu For VS2010 3.0 解除30天限制的方法

    一.概述 首先,ViEmu试用版在安装时会记录安装的时间,用于判断是否已经过了限制的时间,这个时间记录在注册表中 以本人的机器(WIN7X64)为例,它记录在 HKEY_CLASSES_ROOT\Wo ...

  5. NYOJ 1066 CO-PRIME(数论)

    CO-PRIME 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描写叙述 This problem is so easy! Can you solve it? You are ...

  6. Android API中被忽略的几个函数接口

    1. MotionEvent的几个函数 下面的方法都支持多点触摸,即可以对单个触摸点调用下面的方法 1.1 getPressure() 这个api 可以获取到手指触摸屏幕时候的压力,但是需要硬件和驱动 ...

  7. pc2日记——有惊无险的第二天2014/08/29

    今天下午如期的用pc2进行了第二场比赛.因为昨天的出错经历和早上充足的准备,下午的比赛尽管在開始的时候出了点小小的问题,但总的来说还是非常成功的. 早上八点过去504開始又一次配置client,由于开 ...

  8. 谁说程序员都是苦逼的——看看兄弟连上海S2班的点点滴滴

    时间过的很快,上海校区第三期马上临近开班,第一期的学员也结束了自己第一个项目.         今天,2013.05.08日,我亲自参加了S01的第一个项目答辩,也为你们记录下了这样那样的一些时刻.其 ...

  9. Windows消息队列

    一 Windows中有一个系统消息队列,对于每一个正在执行的Windows应用程序,系统为其建立一个“消息队列”,即应用程序队列,用来存放该程序可能 创建的各种窗口的消息.应用程序中含有一段称作“消息 ...

  10. 一次ORA-03113错误解决

    ---------------------------------------------------------------------------- -----------------ORA错误处 ...