poj Firing(最大重量封闭图)
Firing
题目:
要解雇一些人,而解雇的这些人假设人跟他有上下级的关系,则跟他有关系的人也要一起解雇。每一个人都会创造一定的价值,要求你求出在最大的获利下。解雇的人最小。
算法分析:
在这之前要知道一个定理:
最小割 = 最大流
一道最大权闭合图的裸题,而这又能够转换成最小割来求解。证明能够看2007年胡伯涛的论文则能够直接套出模板。没看过的最好去看一下。那里解释的清楚。
这里我给出他的原文的一些构造方法。
添加源s汇t
源s连接原图的正权点,容量为对应点权
原图的负权点连接汇t。容量为对应点权的相反数
原图边的容量为正无限.
而这里事实上最难的是第一问。而因为本人的实力有限。所以,难以解释清楚。
可是网上流传的该题解题报告的人非常少有解释清的,都是一笔带过。找了好久才找到了一篇正确的解释。以下给出解释。
////////////////////////////////////////////////////////////////
标准的最大权闭合图,构图:从源点s向每一个正收益点连边,容量为收益;从每一个负收益点向汇点t连边,容量为收益的相反数;对于i是j的上司,连边i->j,容量为inf。最大收益 = 正收益点权和 - 最小割 = 正收益点权和 - 最大流(胡波涛论文上有证明)。这题的关键是怎样在最小割的前提下求出最少的割边数目,能够从源点对残量网络进行一次DFS,每一个割都会将源汇隔开,所以从源点DFS下去一定会由于碰到某个割而无法前进,用反证法易知这时遍历过的点数就是S集的最少点数。
/////////////////////////////////////////////////////////////////
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <cstdio>
#include <cstring>
using namespace std; typedef long long LL;
const int MAXN = 5000 + 10;
const LL INF = (1LL) << 60; //必须(1LL)!!!!!!!!!!!!!!!!!!!! T_T......
struct Edge{
int from,to;
LL cap,flow;
Edge(){};
Edge(int _f,int _t,LL _c,LL _fw)
:from(_f),to(_t),cap(_c),flow(_fw){};
}; vector<Edge> edges;
vector<int> G[MAXN];
bool vst[MAXN];
int d[MAXN],cur[MAXN];
int V,E,S,T;
int cnt; //最少割边数
LL ans,sum; void clr(){
ans = sum = 0;
S = 0; T = V + 1;
for(int i = 0;i <= V;++i)
G[i].clear();
edges.clear();
} void addEdge(int f,int t,LL cap){
edges.push_back(Edge(f,t,cap,0));
edges.push_back(Edge(t,f,0,0));
int sz = edges.size();
G[f].push_back(sz - 2);
G[t].push_back(sz - 1);
} void init(){
LL x;
for(int i = 1;i <= V;++i){
scanf("%I64d",&x);
if(x > 0){
addEdge(S,i,x);
sum += x;
} else {
addEdge(i,T,-x);
}
} int a,b;
for(int i = 0;i < E;++i){
scanf("%d%d",&a,&b);
addEdge(a,b,INF);
}
} bool BFS(){
memset(vst,0,sizeof(vst));
queue<int> Q;
Q.push(S);
d[S] = 0;
vst[S] = 1; while(!Q.empty()){
int x = Q.front(); Q.pop();
for(int i = 0;i < (int)G[x].size();++i){
Edge& e = edges[G[x][i]];
if(!vst[e.to] && e.cap > e.flow){
vst[e.to] = 1;
d[e.to] = d[x] + 1;
Q.push(e.to);
}
}
} return vst[T];
} LL DFS(int x,LL a){
if(x == T||a == 0)
return a; LL flow = 0,f;
for(int& i = cur[x];i < (int)G[x].size();++i){
Edge& e = edges[G[x][i]];
if(d[x] + 1 == d[e.to]&&(f = DFS(e.to,min(a,e.cap - e.flow))) > 0){
e.flow += f;
edges[G[x][i]^1].flow -= f;
flow += f;
a -= f;
if(a == 0) break;
}
}
return flow;
} LL Maxflow(){
LL flow = 0;
while(BFS()){
memset(cur,0,sizeof(cur));
flow += DFS(S,INF);
} return flow;
} //求解在最小割的前提下,得最好割边
void dfs(int u){
vst[u] = 1;
for(int i = 0;i < (int)G[u].size();++i){
Edge& e = edges[G[u][i]];
if(!vst[e.to] && e.cap > e.flow){
cnt++;
dfs(e.to);
}
}
} void solve(){ LL ans = sum - Maxflow(); cnt = 0;
memset(vst,0,sizeof(vst));
dfs(S); printf("%d %I64d\n",cnt,ans);
} int main()
{
// freopen("Input.txt","r",stdin); while(~scanf("%d%d",&V,&E)){
clr();
init(); solve();
}
return 0;
}
poj Firing(最大重量封闭图)的更多相关文章
- POJ 1724 (分层图最短路)
### POJ 1724 题目链接 ### 题目大意: 给你 N 个点 ,M 条有向路,走每条路需要花费 C 元,这段路的长度为 L . 给你 K 元,问你能否从 1 走到 N 点且花费不超过 K 元 ...
- POJ 1625 Censored ( Trie图 && DP && 高精度 )
题意 : 给出 n 个单词组成的字符集 以及 p 个非法串,问你用字符集里面的单词构造长度为 m 的单词的方案数有多少种? 分析 :先构造出 Trie 图方便进行状态转移,这与在 POJ 2278 中 ...
- poj 3648 2-SAT建图+topsort输出结果
其实2-SAT类型题目的类型比较明确,基本模型差不多是对于n组对称的点,通过给出的限制条件建图连边,然后通过缩点和判断冲突来解决问题.要注意的是在topsort输出结果的时候,缩点后建图需要反向连边, ...
- poj 3683 2-sat建图+拓扑排序输出结果
发现建图的方法各有不同,前面一题连边和这一题连边建图的点就不同,感觉这题的建图方案更好. 题意:给出每个婚礼的2个主持时间,每个婚礼的可能能会冲突,输出方案. 思路:n个婚礼,2*n个点,每组点是对称 ...
- POJ 3310 Caterpillar(图的度的判定)
题意: 给定一幅图, 问符不符合一下两个条件: (1) 图中没有环 (2)图中存在一条链, 点要么在链上, 要么是链上点的邻居. 分析: 建图,记录度数, 去掉所有度为1的点, 然后看看剩下是否是有2 ...
- POJ 1149 PIGS 建图,最大流
题意: 你m个猪圈以及每个猪圈里原来有多少头猪,先后给你n个人,每个人能打开某一些猪圈并且他们最多想买Ki头猪,在每一个人买完后能将打开的猪圈中的猪顺意分配在这次打开猪圈里,在下一个人来之前 已打开的 ...
- poj 3635 Full Tank? ( 图上dp )
题意: 已知每一个点的加油站的油价单位价格(即点权).每条路的长度(边权). 有q个询问.每一个询问包含起点s.终点e和油箱容量. 问从起点走到终点的最小花费.假设不可达输出impossible,否则 ...
- Friendship POJ - 1815 基本建图
In modern society, each person has his own friends. Since all the people are very busy, they communi ...
- hdu 3917 最大重量封闭图
/*最大重量封闭图: 意甲冠军:一些城市要建路需要负责一些公司,每家公司都需要缴纳个税.该公司将需要花费每路,另一个限制条件,如果那家公司a既定a-b.公司b既定b-c然后选择 公司a 你必须选择一个 ...
随机推荐
- 常用PHP中花括号使用规则详解
转自http://www.cnblogs.com/jayleke/archive/2011/11/08/2241609.html 1.简单句法规则(用花括号界定变量名,适用于PHP所有版本): $a ...
- s nrmtyu,yi.sfn rt
http://www.zhihu.com/collection/24337307 http://www.zhihu.com/collection/24337259 http://www.zhihu.c ...
- Centos 5.5 更新网卡驱动 bnx2 version: 2.0.2
操作系统:CentOS release 5.5 (Final) 故障现象:网卡无故自动down掉,使用service network restart 重启后没多久又会自动down , 连接数大概在2 ...
- SVNKIT操作SVN版本库的完整例子
Model: package com.wjy.model; public class RepositoryInfo { public static String storeUrl="http ...
- hdu4489(递推dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4489 题意:给一个n,求n个高矮不同的人排成一排使得高.矮依次排列的种数. 详细思路参考:http:/ ...
- poj1243(经典dp)
题目链接:http://poj.org/problem?id=1243 题意:让你猜一个物品的价格,猜低了或者猜高了都会提示你.G,L,表示你有G次机会猜一个数,如果猜错了,G会减少1次,如果你的错误 ...
- Python眼睛护士改进版
添加了设定从(0,0)显示:self.root.geometry('1000x200+0+0')其实主要是两个0.那个1000和200是没用的,因为已经设定了minsize. 添加了窗口置顶:self ...
- 7款开源Java反编译工具
今天我们要来分享一些关于Java的反编译工具,反编译听起来是一个非常高上大的技术词汇,通俗的说,反编译是一个对目标可执行程序进行逆向分析,从而得到原始代码的过程.尤其是像.NET.Java这样的运行在 ...
- JVM必备指南(转)
本文由 ImportNew - xiafei 翻译自 anturis.欢迎加入翻译小组.转载请见文末要求. 简介 Java虚拟机(JVM)是Java应用的运行环境,从一般意义上来讲,JVM是通过规范来 ...
- 特里-HDOJ-1671
Phone List Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...