最短路径=》BFS    所有路径=》DFS

126. Word Ladder II

BFS+DFS:

BFS找出下一个有效的word进队 并记录step 更新两个变量:unordered_map<string, vector<string>> next, unordered_map<string,int> visit

DFS找出所有的解法 更新两个变量:vector<vector<string>> result, vector<string> level

131. Palindrome Partitioning

bool isPalindrome(string &s, int start, int end)
{
  while(start< end)
  {
  if(s[start] != s[end])
    return false;
  start++; end--;
  }
  return true;
}

140. Word Break II

本题与上一题Word Break思路类似,但是一个是DP,一个是DFS + 剪枝。
DP是Bottom-up 而DFS是TOP-DOWN.

200. Number of Islands

也可用union find,也是用两层循环进行每个grid四个方向遍历看能不能联合起来。

dfs里面做的只有一个: 把访问过的grid由1变成0.

211. Add and Search Word - Data structure design

唯一不同的地方就是search的函数需要重新写一下,因为这道题里面'.'可以代替任意字符,所以一旦有了'.',就需要查找所有的子树,只要有一个返回true,整个search函数就返回true,典型的DFS的问题

207. Course Schedule

有向图的环检测
bool canFinish(int numCourses, vector<pair<int, int>>& prerequisites) {
///先来看BFS的解法,我们定义二维数组graph来表示这个有向图,一位数组in来表示每个顶点的入度。我们开始先根据输入来建立这个有向图,并将入度数组也初始化好。然后我们定义一个queue变量,将所有入度为0的点放入队列中,然后开始遍历队列,从graph里遍历其连接的点,每到达一个新节点,将其入度减一,如果此时该点入度为0,则放入队列末尾。直到遍历完队列中所有的值,若此时还有节点的入度不为0,则说明环存在,返回false,反之则返回true。
vector<vector<int>> graph(numCourses, vector<int>(0));
vector<int> indegree(numCourses, 0);
for(auto pre : prerequisites){
graph[pre[1]].push_back(pre[0]);////不能通过
indegree[pre[0]]++;
}
queue<int> q;
for(int i = 0; i < numCourses; i++){
if(indegree[i] == 0) q.push(i);
}
while(!q.empty()){
int top = q.front();
q.pop();
for(auto a : graph[top]){
indegree[a]--;
if(indegree[a] == 0) q.push(a);
}
}
for(int i = 0; i < numCourses; i++){
if(indegree[i] != 0) return false;
}
return true;
}
};

再来看DFS的解法,也需要建立有向图,还是用二维数组来建立,和BFS不同的是,我们像现在需要一个一维数组visit来记录访问状态,大体思路是,先建立好有向图,然后从第一个门课开始,找其可构成哪门课,暂时将当前课程标记为已访问,然后对新得到的课程调用DFS递归,直到出现新的课程已经访问过了,则返回false,没有冲突的话返回true,然后把标记为已访问的课程改为未访问。

////对称

vector<vector<int>> graph(numCourses, vector<int>(0));
vector<bool> isVisit(numCourses, false);
for(auto pre : prerequisites){
graph[pre[1]].push_back(pre[0]);
}
for(int i = 0; i < numCourses; i++){
if(!dfs(graph, isVisit, i)) return false;
}
return true;
}

bool dfs(vector<vector<int>>& graph, vector<bool>& isVisit, int i){
if(isVisit[i] == false){
isVisit[i] = true;
//if(!dfs(graph, isVisit, i++)) return false;
for(auto a : graph[i]){
if(!dfs(graph, isVisit, a)) return false;
}
}else{
return false;
}
isVisit[i] = false;
return true;
}

可以这样!!!

vector<unordered_set<int>> make_graph(int numCourses, vector<pair<int, int>>& prerequisites) {

vector<unordered_set<int>> graph(numCourses);

for (auto pre : prerequisites) graph[pre.second].insert(pre.first);

return graph; }

212.Word Search II

在这题中只要实现字典树中的insert功能就行了,查找单词和前缀就没有必要了,然后DFS的思路跟之前那道Word Search 词语搜索基本相同

  1. void search(vector<vector<char> > &board, TrieNode *p, int i, int j, vector<vector<bool> > &visit, vector<string> &res) {
  2. if (!p->str.empty()) {
  3. res.push_back(p->str);
  4. p->str.clear();
  5. }
  6. int d[][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
  7. visit[i][j] = true;
  8. for (auto &a : d) {
  9. int nx = a[0] + i, ny = a[1] + j;
  10. if (nx >= 0 && nx < board.size() && ny >= 0 && ny < board[0].size() && !visit[nx][ny] && p->child[board[nx][ny] - 'a']) {
  11. search(board, p->child[board[nx][ny] - 'a'], nx, ny, visit, res);
  12. }
  13. }
  14. visit[i][j] = false;
  15. }
    216. Combination Sum III1 不用sum这个变量 直接在dfsparameter N 里减去i+1
    2 return条件与push_back的条件不同

DFS - leetcode [深度优先遍历]的更多相关文章

  1. 图文详解两种算法:深度优先遍历(DFS)和广度优先遍历(BFS)

    参考网址:图文详解两种算法:深度优先遍历(DFS)和广度优先遍历(BFS) - 51CTO.COM 深度优先遍历(Depth First Search, 简称 DFS) 与广度优先遍历(Breath ...

  2. 图的深度优先遍历DFS

    图的深度优先遍历是树的前序遍历的应用,其实就是一个递归的过程,我们人为的规定一种条件,或者说一种继续遍历下去的判断条件,只要满足我们定义的这种条件,我们就遍历下去,当然,走过的节点必须记录下来,当条件 ...

  3. 图的深度优先遍历(DFS)—递归算法

    实验环境:win10, DEV C++5.11 实验要求: 实现图的深度优先遍历 实验代码: #include <iostream> #define maxSize 255 #includ ...

  4. 图的深度优先遍历(DFS)和广度优先遍历(BFS)

    body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...

  5. 广度优先遍历-BFS、深度优先遍历-DFS

    广度优先遍历-BFS 广度优先遍历类似与二叉树的层序遍历算法,它的基本思想是:首先访问起始顶点v,接着由v出发,依次访问v的各个未访问的顶点w1 w2 w3....wn,然后再依次访问w1 w2 w3 ...

  6. (原创)不过如此的 DFS 深度优先遍历

    DFS 深度优先遍历 DFS算法用于遍历图结构,旨在遍历每一个结点,顾名思义,这种方法把遍历的重点放在深度上,什么意思呢?就是在访问过的结点做标记的前提下,一条路走到天黑,我们都知道当每一个结点都有很 ...

  7. 深度优先遍历DFS

    深度优先遍历,这个跟树中的遍历类似,做深度遍历就是访问一个节点之后,在访问这个节点的子节点,依次下去是一个递归的过程. 具体代码: void DFS(MGraph g ,int i) {     in ...

  8. Leetcode题目46.全排列(回溯+深度优先遍历+状态重置-中等)

    题目描述: 给定一个没有重复数字的序列,返回其所有可能的全排列. 示例: 输入: [1,2,3] 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], ...

  9. 图的深度优先遍历(DFS) c++ 非递归实现

    深搜算法对于程序员来讲是必会的基础,不仅要会,更要熟练.ACM竞赛中,深搜也牢牢占据着很重要的一部分.本文用显式栈(非递归)实现了图的深度优先遍历,希望大家可以相互学习. 栈实现的基本思路是将一个节点 ...

随机推荐

  1. AE基础知识之地图浏览

    地图浏览:(放大缩小平移全图) //全局变量 public enum enumToolFlag { None ZoomOut, ZoomIn, Pan, } enumToolFlag flag = e ...

  2. WINCE 电池状态(C#)

    WINCE 电池状态(C#) 分类:             电量              2013-04-18 12:08     397人阅读     评论(1)     收藏     举报   ...

  3. 广告基本知识-ROI分解

    任何一个在线广告系统,都面临ROI的问题,对于Invest,我们先不考虑,因为对于流量有多种方式可以买回,也无法优化(当然在RTB的时候是可以优化的).Return是主要优化的方向,Return=点击 ...

  4. enode框架step by step之框架的物理部署思路

    enode框架step by step之框架的物理部署思路   enode框架系列step by step文章系列索引: enode框架step by step之开篇 enode框架step by s ...

  5. Microsoft2013校园招聘笔试题

    Microsoft2013校园招聘笔试题 继续求拍砖!!!! 1. You are managing the database of a book publichser, you currently ...

  6. python手记(11)

    <form method="POST" action="http://host.com/cgi-bin/test.py"> <p>You ...

  7. php的curl封装类

    之前一直做爬虫相关的,每次自己去写一系列curl_setopt()函数太繁琐,我于是封装了如下curl请求类. <?php /** * @author freephp * @date 2015- ...

  8. JSP标签<meta>的作用

    meta标签: meta标签共有两个属性,它们分别是http-equiv属性和name属性. name 属性 :<meta name="Generator" contect= ...

  9. HTTP协议系列(2)--顺带离职的一些想法

    一.聊聊离职感悟      来杭州也是将近3个月了,也迎来我的第一次辞职,有可能你会说我傻怎么不拿年终奖,也有可能你会不理解为什么3个月就要辞职:我只能说我是怀揣的梦想来的,我想着进一步的提升,想着成 ...

  10. Asp.Net 网站访问人数及在线人数

    利用Application对象和Session对象可以统计历史访问人数和当前在线人数. 在会话开始和结束时,一定要进行加锁和解锁操作.由于多个用户可以共享Application对象,因此加锁是必要的, ...