列表生成式:

需求:列表[1,2,3,4,5,6,7,8,9]每个值加1,实现的方法:

a = [0,1,2,3,4,5,6,7,8,9]
b = []
for i in a:b.append(i+1)
a = b
print(a)

第二种方法:

a = [1,2,3,4,5,6,7,8,9]
a = map(lambda x:x+1,a)
for i in a :print(i)

第三种方式:(列表生成式)

a = [i+1 for i in range(10)]
print(a)

生成器:

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

L = [x * x for x in range(10)]
print(L) g = (x * x for x in range(10))
print(g)

创建的L是列表,而g是一个生成器。

打印元素:

print(g.__next__())
print(g.__next__())
print(g.__next__())
print(g.__next__())
print(g.__next__())
print(g.__next__())
print(g.__next__())
print(g.__next__())
print(g.__next__())
print(g.__next__())
print(g.__next__())
print(g.__next__())
print(g.__next__())
print(g.__next__())
print(g.__next__()) 输出:
0
Traceback (most recent call last):
1
  File "D:/workspace/day4/generator_mod.py", line 12, in <module>
4
    print(g.__next__())
9
StopIteration
16
25
36
49
64
81

当索取的值超过列表长度时,报错:StopIteration

使用for循环来调用生成器:

g = (x*x for x in range(10))

for i in g:
print(i) 0
1
4
9
16
25
36
49
64
81

一般创建generator后,基本不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration错误。

使用函数来实现较为复杂的斐波那契数列:

def fib(max):
n,a,b=0,0,1
while n < max:
print(b)
a,b = b,a+b #注意赋值语句,
n = n+1
return 'done' #注意赋值语句a,b=b,a+b相当于:
#t=(b,a+b) #t是一个元组
#a=t[0]
#b=t[1] #执行:
fib(10)
1
1
2
3
5
8
13
21
34
55

把上面的函数变成generator,只需要把print(b)改成yield b就可以了,如下:

def fib(max):
n,a,b = 0,0,1 while n < max:
yield b
a,b = b,a+b
n += 1
return 'done' f = fib(6)
print(f) #输出:
<generator object fib at 0x00000239D28A6888>

这是定义generator的另一种方法,如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator

比较难理解的是generator执行流程和函数不太一样,函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()

的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

data = fib(10)
print(data) print(data.__next__())
print(data.__next__())
print("打个标记")
print(data.__next__())
print(data.__next__())
print(data.__next__())
print(data.__next__())
print(data.__next__()) #输出
<generator object fib at 0x000001EB0E016990>
1
1
打个标记
2
3
5
8
13

使用for循环来迭代:

for n in fib(6):
print(n) #输出
1
1
2
3
5
8

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

g = fib(10)
while True:
try:
x = next(g)
print('g',x)
except StopIteration as e:
print('Generator return value:',e.value)
break #输出:
g 1
g 1
g 2
g 3
g 5
g 8
g 13
g 21
g 34
g 55
Generator return value: done

还可以通过yield实现在单线程的情况下实现并发运算的效果

import time
def consumer(name):
print("%s 准备吃包子啦!" %name)
while True:
baozi = yield print("包子[%s]来了,被[%s]吃了!" %(baozi,name)) def producer(name):
c = consumer('A')
c2 = consumer('B')
c.__next__()
c2.__next__()
print("%s开始准备做包子啦!"%name)
for i in range(10):
time.sleep(1)
print("做了2个包子!")
c.send(i)
c2.send(i) producer("Tim")

迭代器:

一般来说,可以使用for循环来操作的对象成为可迭代对象,如列表,元组,集合,字典,字符串,generator等。

可以使用isinstance()判断一个对象是否是Iterable对象:

from collections import Iterable
>>>isinstance([],Iterable)
True
>>>isinstance(x for x in range(10),Iterable)
True

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

*可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

可以使用isinstance()判断一个对象是否是Iterator对象:

from collections import Iterator
>>>isinstance((x for x in range(10)),Iterator)
True
isinstance([],Iterator)
False

生成器都是Iterator对象,但list,dict,str虽然是Iterable,但不是Iterator.

把list,dict,str等Iterable变成Iterator可以使用iter()函数:

>>>isinstance(iter[],Iterator)
True
>>>isinstance(iter('abc'),Iterator)
True

列表,元组,字典等对象的长度是可知的,而Iterator对象的长度是未知的,可以通过for,next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的。

小结:

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

python--day4--迭代器、生成器的更多相关文章

  1. python函数-迭代器&生成器

    python函数-迭代器&生成器 一.迭代器 1 可迭代协议 迭代:就是类似for循环,将某个数据集内的数据可以“一个挨着一个取出来” 可迭代协议: ① 协议内容:内部实现__iter__方法 ...

  2. 【python】迭代器&生成器

    源Link:http://www.cnblogs.com/huxi/archive/2011/07/01/2095931.html 迭代器 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素 ...

  3. Python基础-迭代器&生成器&装饰器

    本节内容 迭代器&生成器 装饰器 Json & pickle 数据序列化 软件目录结构规范 作业:ATM项目开发 1.列表生成式,迭代器&生成器 列表生成式 我现在有个需求,看 ...

  4. 【Python】 迭代器&生成器

    迭代器 任何一个类,只要其实现了__iter__方法,就算是一个可迭代对象.可迭代对象的__iter__方法返回的对象是迭代器,迭代器类需要实现next方法.一般来说,实现了__iter__方法的类肯 ...

  5. Python学习——迭代器&生成器&装饰器

    一.迭代器 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退迭代器的一大优点是不要求事先准备好整个迭代过程中所有的元素.迭代器仅 ...

  6. day4迭代器&生成器&正则表达式

    一.迭代器 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不能后退,不过这也没什么,因为人们很少在迭代途中后退.另外,迭代器的一大优点 ...

  7. python之迭代器 生成器 枚举 常用内置函数 递归

    迭代器 迭代器对象:有__next__()方法的对象是迭代器对象,迭代器对象依赖__next__()方法进行依次取值 with open('text.txt','rb',) as f: res = f ...

  8. 跟着ALEX 学python day4集合 装饰器 生成器 迭代器 json序列化

    文档内容学习于 http://www.cnblogs.com/xiaozhiqi/  装饰器 : 定义: 装饰器 本质是函数,功能是装饰其他函数,就是为其他函数添加附加功能. 原则: 1.不能修改被装 ...

  9. Python(四)装饰器、迭代器&生成器、re正则表达式、字符串格式化

    本章内容: 装饰器 迭代器 & 生成器 re 正则表达式 字符串格式化 装饰器 装饰器是一个很著名的设计模式,经常被用于有切面需求的场景,较为经典的有插入日志.性能测试.事务处理等.装饰器是解 ...

  10. python高级之生成器&迭代器

    python高级之生成器&迭代器 本机内容 概念梳理 容器 可迭代对象 迭代器 for循环内部实现 生成器 1.概念梳理 容器(container):多个元素组织在一起的数据结构 可迭代对象( ...

随机推荐

  1. 对C# 构造函数的理解

    C#构造函数是在创建给定类型的对象时执行的类方法. 构造函数具有与类相同的名称,它通常初始化新对象的数据成员.不带参数的构造函数称为“默认构造函数”. 无论何时,只要使用 new 运算符实例化对象,并 ...

  2. KnockOut文档--模板绑定

    目的 模板绑定使用数据render模板,然后把渲染的结果填充到Dom树中.模板通过重复或嵌套块(通常为您的视图模型数据的函数)用一种简单,方便的方式来建立复杂的UI结构 . 有两种方式使用模板: Na ...

  3. HDU 2073 无限的路

    Problem Description 甜甜从小就喜欢画图画,最近他买了一支智能画笔,由于刚刚接触,所以甜甜只会用它来画直线,于是他就在平面直角坐标系中画出如下的图形: 甜甜的好朋友蜜蜜发现上面的图还 ...

  4. iOS extern使用教程

    ios开发使用extern访问全局变量 使用extern关键字法: 1 .新建Constants.h文件(文件名根据需要自己取),用于存放全局变量: 2. 在Constants.h中写入你需要的全局变 ...

  5. hdu 1998 奇数阶魔方(找规律+模拟)

    应该不算太水吧. 17  24   1   8  15   23   5   7  14  16    4   6  13  20  22   10  12  19  21   3   11  18 ...

  6. 横瓜执导众程序员开展大讨论关于C、JAVA及其它主流IT技术使用情况和优点缺点。

    横瓜执导众程序员开展大讨论关于C.JAVA及其它主流IT技术使用情况和优点缺点. 遥执乾坤(44758121)  18:21:23 mysql据说只能使用一个索引,我这里几乎所有字段都有索引. 但每个 ...

  7. .NET基础——循环、枚举

    1. 循环结构 3种循环语句:while.do-while.for 面对循环我们应当注意: 1. 循环在做什么?(重复做的事情——也就是循环体的内容) 2. 循环的终止条件是什么?(循环条件) 3种循 ...

  8. 【MSP是什么】MSP认证之项目群管理

    项目群管理是一套流程.工具和方法来管理一组项目以达到与组织愿景一致的目的.为了达成对业务具有战略重要性的成果并实现收益, 而对一系列项目和变革活动的组织.方向和实施开展的协调行动.通过对项目群进行管理 ...

  9. [HMLY]10.深入研究Block用weakSelf、strongSelf、@weakify、@strongify解决循环引用

    前言 在上篇中,仔细分析了一下Block的实现原理以及__block捕获外部变量的原理.然而实际使用Block过程中,还是会遇到一些问题,比如Retain Circle的问题. 目录 1.Retain ...

  10. [pinyin4j] java版汉字转换拼音(大小写)

    pinyin4J 是一个可以将汉字转换成拼音的lib,非常实用,其maven地址为:http://mvnrepository.com/artifact/com.belerweb/pinyin4j/2. ...