题目链接

Problem Description
My birthday is coming up and traditionally I'm serving pie. Not just one pie, no, I have a number N of them, of various tastes and of various sizes. F of my friends are coming to my party and each of them gets a piece of pie. This should be one piece of one pie, not several small pieces since that looks messy. This piece can be one whole pie though.

My friends are very annoying and if one of them gets a bigger piece than the others, they start complaining. Therefore all of them should get equally sized (but not necessarily equally shaped) pieces, even if this leads to some pie getting spoiled (which is better than spoiling the party). Of course, I want a piece of pie for myself too, and that piece should also be of the same size.

What is the largest possible piece size all of us can get? All the pies are cylindrical in shape and they all have the same height 1, but the radii of the pies can be different.

 
Input
One line with a positive integer: the number of test cases. Then for each test case:
---One line with two integers N and F with 1 <= N, F <= 10 000: the number of pies and the number of friends.
---One line with N integers ri with 1 <= ri <= 10 000: the radii of the pies.
 
Output
For each test case, output one line with the largest possible volume V such that me and my friends can all get a pie piece of size V. The answer should be given as a floating point number with an absolute error of at most 10^(-3).
 
Sample Input
3
3 3
4 3 3
1 24
5
10 5
1 4 2 3 4 5 6 5 4 2
 
Sample Output
25.1327
3.1416
50.2655

题解:将n个蛋糕分给m+1个人,但是每个人只能拿到一块(不能拼凑),每块大小要相同(形状不用相同),问每个人最多能分到多大的蛋糕(面积)。思路是先求出面积,用数组保存,并排序。L为0,R为最大的那个蛋糕的面积,然后二分搜索。

#include <cstdio>
#include <iostream>
#include <string>
#include <sstream>
#include <cstring>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <map>
#define PI acos(-1.0)
#define ms(a) memset(a,0,sizeof(a))
#define msp memset(mp,0,sizeof(mp))
#define msv memset(vis,0,sizeof(vis))
using namespace std;
//#define LOCAL
int n,m;
double a[];
bool check(double x)
{
int cnt=;
for(int i=; i<n; i++)
{
cnt+=int(a[i]/x);
if(cnt>=m)return ;
}
return ;
}
bool cmp(double a,double b)
{
return a>b;
}
int main()
{
#ifdef LOCAL
freopen("in.txt", "r", stdin);
#endif // LOCAL
ios::sync_with_stdio(false);
int N;
cin>>N;
while(N--)
{
//int n,m;
cin>>n>>m;
m++;
ms(a);
for(int i=; i<n; i++)
{
cin>>a[i];
a[i]=a[i]*a[i]*PI;
}
sort(a,a+n,cmp);
double l=,r=a[],mid;
if(m<n)n=m;//即使前面m个不够,后面的也没用,这样可以省点时间
while(r-l>1e-)
{
mid=(r+l)/;
if(check(mid))l=mid;
else r=mid;
}
printf("%.4lf\n",l);
}
return ;
}

HDU 1969 Pie(二分搜索)的更多相关文章

  1. hdu 1969 Pie(二分查找)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1969 Pie Time Limit: 5000/1000 MS (Java/Others)    Me ...

  2. HDU 1969 Pie(二分法)

    My birthday is coming up and traditionally I’m serving pie. Not just one pie, no, I have a number N ...

  3. HDU 1969 Pie(二分查找)

    Problem Description My birthday is coming up and traditionally I'm serving pie. Not just one pie, no ...

  4. HDU 1969 Pie(二分,注意精度)

    Pie Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  5. hdu 1969 Pie (二分法)

    Pie Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  6. HDU 1969 Pie【二分】

    [分析] “虽然不是求什么最大的最小值(或者反过来)什么的……但还是可以用二分的,因为之前就做过一道小数型二分题(下面等会讲) 考虑二分面积,下界L=0,上界R=∑ni=1nπ∗ri2.对于一个中值x ...

  7. 题解报告:hdu 1969 Pie(二分)

    Problem Description My birthday is coming up and traditionally I'm serving pie. Not just one pie, no ...

  8. hdu 1969 pie 卡精度的二分

    Pie Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  9. HDU 1969 Pie

    二分答案+验证(这题精度卡的比较死) #include<stdio.h> #include<math.h> #define eps 1e-7 ; double a[ff]; d ...

随机推荐

  1. linux shell脚本学习xargs命令使用详解

    作用是将参数列表转换成小块分段传递给其他命令,以避免参数列表过长的问题 xargs是给命令传递参数的一个过滤器,也是组合多个命令的一个工具.它把一个数据流分割为一些足够小的块,以方便过滤器和命令进行处 ...

  2. mysql给表添加外键并查询

    CREATE TABLE `heart` ( `heart_ID` ) NOT NULL AUTO_INCREMENT, `heart_name` ) CHARACTER SET utf8 NOT N ...

  3. Unity3DGUI:Window

    #pragma strictvar winRect:Rect=Rect(30,100,150,200);var windowShow:boolean=true;function OnGUI () { ...

  4. HTTP 错误 404.8 - Not Found

    HTTP 错误 404.8 - Not Found请求筛选模块被配置为拒绝包含 hiddenSegment 节的 URL 中的路径. 详细错误信息模块 RequestFilteringModule 通 ...

  5. PL SQL Developer报错框乱码

    在系统变量里设置 变量名:NLS_LANG 变量值设为:SIMPLIFIED CHINESE_CHINA.ZHS16GBK

  6. webapi mvc路由注册

    在VS.NET 2013中,新建WebAPI项目,代码总的 GlobalConfiguration.Configure(WebApiConfig.Register); 编译时会提示:System.We ...

  7. 如何在无法直接用VS启动代码时如何调试代码

    1. 普通情况下对进程Attach就可以调试. 2. 但是在一些情况下直接attach并无法调试,例如安装程序installer, 这样使用如下的调试方法即可调试安装程序. System.Diagno ...

  8. java实现的快速排序算法

    快速排序的原理:选择一个关键值作为基准值.比基准值小的都在左边序列(一般是无序的),比基准值大的都在右边(一般是无序的).一般选择序列的第一个元素. 一次循环:从后往前比较,用基准值和最后一个值比较, ...

  9. 手工杀毒辅助软件(PC Hunter) V1.51 免费绿色版

    软件名称: 手工杀毒辅助软件(PC Hunter) 软件语言: 简体中文 授权方式: 免费软件 运行环境: Win 32位/64位 软件大小: 4.7MB 图片预览: 软件简介: PC Hunter是 ...

  10. linux面试

    1.用户进程间通信主要哪几种方式 (1)管道(Pipe):管道可用于具有亲缘关系进程间的通信,允许一个进程和另一个与它有共同祖先的进程之间进行通信.(2)命名管道(named pipe):命名管道克服 ...