Description

Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N). 



We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change
it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions. 



1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2). 

2. Q x y (1 <= x, y <= n) querys A[x, y]. 

Input

The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case. 



The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2
y2", which has been described above. 

Output

For each querying output one line, which has an integer representing A[x, y]. 



There is a blank line between every two continuous test cases. 

Sample Input

1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1

Sample Output

1
0
0
1

Source


这道题确实非常经典,尤其在这个二进制的计算方面
具体的能够參考《浅谈信息学竞赛中的“0”和“1”》此论文。网上非常多说的并不具体,大多仅仅介绍了翻转。并没有介绍为何sum(x,y)%2能得到结果
论文里非常具体的证明了

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <list>
#include <algorithm>
#include <climits>
using namespace std; #define lson 2*i
#define rson 2*i+1
#define LS l,mid,lson
#define RS mid+1,r,rson
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 1005
#define INF 0x3f3f3f3f
#define EXP 1e-8
#define lowbit(x) (x&-x)
const int mod = 1e9+7; int c[N][N],n,m,cnt,s,t;
int a[N][N]; int sum(int x,int y)
{
int ret = 0;
int i,j;
for(i = x;i>=1;i-=lowbit(i))
{
for(j = y;j>=1;j-=lowbit(j))
{
ret+=c[i][j];
}
}
return ret;
} void add(int x,int y)
{
int i,j;
for(i = x;i<=n;i+=lowbit(i))
{
for(j = y;j<=n;j+=lowbit(j))
{
c[i][j]++;
}
}
} int main()
{
int i,j,x,y,ans,t;
int x1,x2,y1,y2;
char op[10];
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
MEM(c,0);
MEM(a,0);
while(m--)
{
scanf("%s",op);
if(op[0]=='C')
{
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
x1++,y1++,x2++,y2++;
add(x2,y2);
add(x1-1,y1-1);
add(x2,y1-1);
add(x1-1,y2);
}
else
{
scanf("%d%d",&x1,&y1);
x2 = x1,y2 = y1;
x1++,y1++,x2++,y2++;
printf("%d\n",sum(x1,y1));
}
}
printf("\n");
} return 0;
}

POJ2155:Matrix(二维树状数组,经典)的更多相关文章

  1. [poj2155]Matrix(二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25004   Accepted: 9261 Descripti ...

  2. poj----2155 Matrix(二维树状数组第二类)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 16950   Accepted: 6369 Descripti ...

  3. 【poj2155】Matrix(二维树状数组区间更新+单点查询)

    Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...

  4. poj2155一个二维树状数组

                                                                                                         ...

  5. POJ 2155 Matrix(二维树状数组,绝对具体)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20599   Accepted: 7673 Descripti ...

  6. POJ 2155:Matrix 二维树状数组

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 21757   Accepted: 8141 Descripti ...

  7. poj 2155 Matrix (二维树状数组)

    题意:给你一个矩阵开始全是0,然后给你两种指令,第一种:C x1,y1,x2,y2 就是将左上角为x1,y1,右下角为x2,y2,的这个矩阵内的数字全部翻转,0变1,1变0 第二种:Q x1 y1,输 ...

  8. POJ2155【二维树状数组,区间修改,点查询?】【又被输入输出坑】

    这题反反复复,到现在才过. 这道题就是树状数组的逆用,用于修改区间内容,查询点的值. 如果单纯就这个奇偶数来判的话,似乎这个思路比较好理解. 看了一下国家集训队论文(囧),<关于0与1在信息学奥 ...

  9. Matrix 二维树状数组的第二类应用

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17976   Accepted: 6737 Descripti ...

随机推荐

  1. Eclipse用法和技巧七:自动生成get和set方法2

    上一篇文章中我们介绍了自动批量生成get和set函数的方法.这个方法一般在声明完类的数据域之后使用,比较方便快捷.这里再补充几个自动生成get和set函数的方法. 步骤一:在声明的数据域中按Ctrl+ ...

  2. 聊天气泡的绘制(圆角矩形+三角形+黑色边框,关键学会QPainter的draw函数就行了),注意每个QLabel都有自己的独立坐标

    头文件: #ifndef GLABEL_H #define GLABEL_H #include <QLabel> #include <QPainter> #include &l ...

  3. maven生成war包的两种方式

    war包即对WEB应用程序进行打包,用于应用容器的部署.如在jboss中只要把war包丢入deploy目录下即可发布自己的应用了.打包方式有很多中,很多工具本身就支持此功能.下面主要介绍通过maven ...

  4. 【翻译】Sencha Ext JS 5公布

    原文:Announcing Sencha Ext JS 5 简单介绍 我代表Sencha和整个Ext JS团队,非常自豪的宣布,在今天,Sencha Ext JS 5公布了.Ext JS 5已经迈出了 ...

  5. Swift - 使用相机拍摄照片

    1,打开相机拍照 通过设置图片控制器UIImagePickerController的来源为UIImagePickerControllerSourceType.Camera,便可以打开相机 1 2 3 ...

  6. 浅谈sqlldr

    1.安装oracle  sqlldr 2.配置sqlldr环境 3java代码的实现 在windows下面sqlldr: sqlldr = “cmd /c start  D:/oracle/produ ...

  7. RMAN 备份

    backup database; --备份整库 backup database format '\xxxxxx\xxx_%U'; --备份整库到指定路劲 backup tablespace users ...

  8. EL表达式(2)

    本篇介绍EL表达式的隐式对象,如同JSP一样,EL也封装了11个隐式对象,通过这些隐式对象可以在EL表达式中直接使用. 在使用EL时,其实EL是先看标识符是否是其隐式对象之一,如果不是,才从四个域(p ...

  9. Python 链接MysqlDB

    下载安装MySQLdb <1>linux版本 http://sourceforge.net/projects/mysql-python/ 下载,在安装是要先安装setuptools,然后在 ...

  10. 【ASP.NET Web API教程】3.2 通过.NET客户端调用Web API(C#)

    原文:[ASP.NET Web API教程]3.2 通过.NET客户端调用Web API(C#) 注:本文是[ASP.NET Web API系列教程]的一部分,如果您是第一次看本博客文章,请先看前面的 ...