计算图设计

很简单的实践,

  • 多了个隐藏层
  • 没有上节的高斯噪声
  • 网络写法由上节的面向对象改为了函数式编程,

其他没有特别需要注意的,实现如下:

import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' learning_rate = 0.01 # 学习率
training_epochs = 20 # 训练轮数,1轮等于n_samples/batch_size
batch_size = 128 # batch容量
display_step = 1 # 展示间隔
example_to_show = 10 # 展示图像数目 n_hidden_units = 256
n_input_units = 784
n_output_units = n_input_units def WeightsVariable(n_in, n_out, name_str):
return tf.Variable(tf.random_normal([n_in, n_out]), dtype=tf.float32, name=name_str) def biasesVariable(n_out, name_str):
return tf.Variable(tf.random_normal([n_out]), dtype=tf.float32, name=name_str) def encoder(x_origin, activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer'):
Weights = WeightsVariable(n_input_units, n_hidden_units, 'Weights')
biases = biasesVariable(n_hidden_units, 'biases')
x_code = activate_func(tf.add(tf.matmul(x_origin, Weights), biases))
return x_code def decode(x_code, activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer'):
Weights = WeightsVariable(n_hidden_units, n_output_units, 'Weights')
biases = biasesVariable(n_output_units, 'biases')
x_decode = activate_func(tf.add(tf.matmul(x_code, Weights), biases))
return x_decode with tf.Graph().as_default():
with tf.name_scope('Input'):
X_input = tf.placeholder(tf.float32, [None, n_input_units])
with tf.name_scope('Encode'):
X_code = encoder(X_input)
with tf.name_scope('decode'):
X_decode = decode(X_code)
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.pow(X_input - X_decode, 2))
with tf.name_scope('train'):
Optimizer = tf.train.RMSPropOptimizer(learning_rate)
train = Optimizer.minimize(loss) init = tf.global_variables_initializer() # 因为使用了tf.Graph.as_default()上下文环境
# 所以下面的记录必须放在上下文里面,否则记录下来的图是空的(get不到上面的default)
writer = tf.summary.FileWriter(logdir='logs', graph=tf.get_default_graph())
writer.flush()

计算图:

训练程序

import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' learning_rate = 0.01 # 学习率
training_epochs = 20 # 训练轮数,1轮等于n_samples/batch_size
batch_size = 128 # batch容量
display_step = 1 # 展示间隔
example_to_show = 10 # 展示图像数目 n_hidden_units = 256
n_input_units = 784
n_output_units = n_input_units def WeightsVariable(n_in, n_out, name_str):
return tf.Variable(tf.random_normal([n_in, n_out]), dtype=tf.float32, name=name_str) def biasesVariable(n_out, name_str):
return tf.Variable(tf.random_normal([n_out]), dtype=tf.float32, name=name_str) def encoder(x_origin, activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer'):
Weights = WeightsVariable(n_input_units, n_hidden_units, 'Weights')
biases = biasesVariable(n_hidden_units, 'biases')
x_code = activate_func(tf.add(tf.matmul(x_origin, Weights), biases))
return x_code def decode(x_code, activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer'):
Weights = WeightsVariable(n_hidden_units, n_output_units, 'Weights')
biases = biasesVariable(n_output_units, 'biases')
x_decode = activate_func(tf.add(tf.matmul(x_code, Weights), biases))
return x_decode with tf.Graph().as_default():
with tf.name_scope('Input'):
X_input = tf.placeholder(tf.float32, [None, n_input_units])
with tf.name_scope('Encode'):
X_code = encoder(X_input)
with tf.name_scope('decode'):
X_decode = decode(X_code)
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.pow(X_input - X_decode, 2))
with tf.name_scope('train'):
Optimizer = tf.train.RMSPropOptimizer(learning_rate)
train = Optimizer.minimize(loss) init = tf.global_variables_initializer() # 因为使用了tf.Graph.as_default()上下文环境
# 所以下面的记录必须放在上下文里面,否则记录下来的图是空的(get不到上面的default)
writer = tf.summary.FileWriter(logdir='logs', graph=tf.get_default_graph())
writer.flush() mnist = input_data.read_data_sets('../Mnist_data/', one_hot=True) with tf.Session() as sess:
sess.run(init)
total_batch = int(mnist.train.num_examples / batch_size)
for epoch in range(training_epochs):
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
_, Loss = sess.run([train, loss], feed_dict={X_input: batch_xs})
Loss = sess.run(loss, feed_dict={X_input: batch_xs})
if epoch % display_step == 0:
print('Epoch: %04d' % (epoch + 1), 'loss= ', '{:.9f}'.format(Loss))
writer.close()
print('训练完毕!') '''比较输入和输出的图像'''
# 输出图像获取
reconstructions = sess.run(X_decode, feed_dict={X_input: mnist.test.images[:example_to_show]})
# 画布建立
f, a = plt.subplots(2, 10, figsize=(10, 2))
for i in range(example_to_show):
a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
a[1][i].imshow(np.reshape(reconstructions[i], (28, 28)))
f.show() # 渲染图像
plt.draw() # 刷新图像
# plt.waitforbuttonpress()

debug一上午的收获:接受sess.run输出的变量名不要和tensor节点的变量名重复,会出错的... ...好低级的错误。mmdz

比较图像一部分之前没做过,介绍了matplotlib.pyplot的花式用法,

  原来plt.subplots()是会返回 画布句柄 & 子图集合 句柄的,子图集合句柄可以像数组一样调用子图

   pyplot是有show()和draw()两个方法的,show是展示出画布,draw会刷新原图,可以交互的修改画布

   waitforbuttonpress()监听键盘按键如果用户按的是键盘,返回True,如果是其他(如鼠标单击),则返回False

另,发现用surface写程序其实还挺带感... ...

输出图像如下:

双隐藏层版本

import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' batch_size = 128 # batch容量
display_step = 1 # 展示间隔
learning_rate = 0.01 # 学习率
training_epochs = 20 # 训练轮数,1轮等于n_samples/batch_size
example_to_show = 10 # 展示图像数目 n_hidden1_units = 256 # 第一隐藏层
n_hidden2_units = 128 # 第二隐藏层
n_input_units = 784
n_output_units = n_input_units def WeightsVariable(n_in, n_out, name_str):
return tf.Variable(tf.random_normal([n_in, n_out]), dtype=tf.float32, name=name_str) def biasesVariable(n_out, name_str):
return tf.Variable(tf.random_normal([n_out]), dtype=tf.float32, name=name_str) def encoder(x_origin, activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer1'):
Weights = WeightsVariable(n_input_units, n_hidden1_units, 'Weights')
biases = biasesVariable(n_hidden1_units, 'biases')
x_code1 = activate_func(tf.add(tf.matmul(x_origin, Weights), biases))
with tf.name_scope('Layer2'):
Weights = WeightsVariable(n_hidden1_units, n_hidden2_units, 'Weights')
biases = biasesVariable(n_hidden2_units, 'biases')
x_code2 = activate_func(tf.add(tf.matmul(x_code1, Weights), biases))
return x_code2 def decode(x_code, activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer1'):
Weights = WeightsVariable(n_hidden2_units, n_hidden1_units, 'Weights')
biases = biasesVariable(n_hidden1_units, 'biases')
x_decode1 = activate_func(tf.add(tf.matmul(x_code, Weights), biases))
with tf.name_scope('Layer2'):
Weights = WeightsVariable(n_hidden1_units, n_output_units, 'Weights')
biases = biasesVariable(n_output_units, 'biases')
x_decode2 = activate_func(tf.add(tf.matmul(x_decode1, Weights), biases))
return x_decode2 with tf.Graph().as_default():
with tf.name_scope('Input'):
X_input = tf.placeholder(tf.float32, [None, n_input_units])
with tf.name_scope('Encode'):
X_code = encoder(X_input)
with tf.name_scope('decode'):
X_decode = decode(X_code)
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.pow(X_input - X_decode, 2))
with tf.name_scope('train'):
Optimizer = tf.train.RMSPropOptimizer(learning_rate)
train = Optimizer.minimize(loss) init = tf.global_variables_initializer() # 因为使用了tf.Graph.as_default()上下文环境
# 所以下面的记录必须放在上下文里面,否则记录下来的图是空的(get不到上面的default)
writer = tf.summary.FileWriter(logdir='logs', graph=tf.get_default_graph())
writer.flush() mnist = input_data.read_data_sets('../Mnist_data/', one_hot=True) with tf.Session() as sess:
sess.run(init)
total_batch = int(mnist.train.num_examples / batch_size)
for epoch in range(training_epochs):
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
_, Loss = sess.run([train, loss], feed_dict={X_input: batch_xs})
Loss = sess.run(loss, feed_dict={X_input: batch_xs})
if epoch % display_step == 0:
print('Epoch: %04d' % (epoch + 1), 'loss= ', '{:.9f}'.format(Loss))
writer.close()
print('训练完毕!') '''比较输入和输出的图像'''
# 输出图像获取
reconstructions = sess.run(X_decode, feed_dict={X_input: mnist.test.images[:example_to_show]})
# 画布建立
f, a = plt.subplots(2, 10, figsize=(10, 2))
for i in range(example_to_show):
a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
a[1][i].imshow(np.reshape(reconstructions[i], (28, 28)))
f.show() # 渲染图像
plt.draw() # 刷新图像
# plt.waitforbuttonpress()

输出图像如下:


由于压缩到128个节点损失信息过多,所以结果不如之前单层的好。

有意思的是我们把256的那层改成128(也就是双128)后,结果反而比上面的要好:

但是仍然比不上单隐藏层,数据比较简单时候复杂网络效果可能不那么好(loss值我没有截取,但实际上是这样,虽然不同网络loss直接比较没什么意义),当然,也有可能是复杂网络没收敛的结果。

可视化双隐藏层自编码器

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' batch_size = 128 # batch容量
display_step = 1 # 展示间隔
learning_rate = 0.01 # 学习率
training_epochs = 20 # 训练轮数,1轮等于n_samples/batch_size
example_to_show = 10 # 展示图像数目 n_hidden1_units = 256 # 第一隐藏层
n_hidden2_units = 128 # 第二隐藏层
n_input_units = 784
n_output_units = n_input_units def variable_summaries(var): #<---
"""
可视化变量全部相关参数
:param var:
:return:
"""
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.histogram('mean', mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev) # 注意,这是标量
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var) def WeightsVariable(n_in,n_out,name_str):
return tf.Variable(tf.random_normal([n_in,n_out]),dtype=tf.float32,name=name_str) def biasesVariable(n_out,name_str):
return tf.Variable(tf.random_normal([n_out]),dtype=tf.float32,name=name_str) def encoder(x_origin,activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer1'):
Weights = WeightsVariable(n_input_units,n_hidden1_units,'Weights')
biases = biasesVariable(n_hidden1_units,'biases')
x_code1 = activate_func(tf.add(tf.matmul(x_origin,Weights),biases))
variable_summaries(Weights) #<---
variable_summaries(biases) #<---
with tf.name_scope('Layer2'):
Weights = WeightsVariable(n_hidden1_units,n_hidden2_units,'Weights')
biases = biasesVariable(n_hidden2_units,'biases')
x_code2 = activate_func(tf.add(tf.matmul(x_code1,Weights),biases))
variable_summaries(Weights) #<---
variable_summaries(biases) #<---
return x_code2 def decode(x_code,activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer1'):
Weights = WeightsVariable(n_hidden2_units,n_hidden1_units,'Weights')
biases = biasesVariable(n_hidden1_units,'biases')
x_decode1 = activate_func(tf.add(tf.matmul(x_code,Weights),biases))
variable_summaries(Weights) #<---
variable_summaries(biases) #<---
with tf.name_scope('Layer2'):
Weights = WeightsVariable(n_hidden1_units,n_output_units,'Weights')
biases = biasesVariable(n_output_units,'biases')
x_decode2 = activate_func(tf.add(tf.matmul(x_decode1,Weights),biases))
variable_summaries(Weights) #<---
variable_summaries(biases) #<---
return x_decode2 with tf.Graph().as_default():
with tf.name_scope('Input'):
X_input = tf.placeholder(tf.float32,[None,n_input_units])
with tf.name_scope('Encode'):
X_code = encoder(X_input)
with tf.name_scope('decode'):
X_decode = decode(X_code)
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.pow(X_input - X_decode,2))
with tf.name_scope('train'):
Optimizer = tf.train.RMSPropOptimizer(learning_rate)
train = Optimizer.minimize(loss) # 标量汇总
with tf.name_scope('LossSummary'):
tf.summary.scalar('loss',loss)
tf.summary.scalar('learning_rate',learning_rate) # 图像展示
with tf.name_scope('ImageSummary'):
image_original = tf.reshape(X_input,[-1, 28, 28, 1])
image_reconstruction = tf.reshape(X_decode, [-1, 28, 28, 1])
tf.summary.image('image_original', image_original, 9)
tf.summary.image('image_recinstruction', image_reconstruction, 9) # 汇总
merged_summary = tf.summary.merge_all() init = tf.global_variables_initializer() writer = tf.summary.FileWriter(logdir='logs', graph=tf.get_default_graph())
writer.flush() mnist = input_data.read_data_sets('../Mnist_data/', one_hot=True) with tf.Session() as sess:
sess.run(init)
total_batch = int(mnist.train.num_examples / batch_size)
for epoch in range(training_epochs):
for i in range(total_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
_,Loss = sess.run([train,loss],feed_dict={X_input: batch_xs})
Loss = sess.run(loss,feed_dict={X_input: batch_xs})
if epoch % display_step == 0:
print('Epoch: %04d' % (epoch + 1),'loss= ','{:.9f}'.format(Loss))
summary_str = sess.run(merged_summary,feed_dict={X_input: batch_xs}) #<---
writer.add_summary(summary_str,epoch) #<---
writer.flush() #<---
writer.close()
print('训练完毕!')

几个有意思的发现,

  使用之前的图像输出方式时,win下matplotlib.pyplot的绘画框会立即退出,所以要使用 plt.waitforbuttonpress() 命令。

  win下使用plt绘画色彩和linux不一样,效果如下:

  

输出图如下:

对比图像如下(截自tensorboard):

『TensorFlow』单&双隐藏层自编码器设计的更多相关文章

  1. 吴裕雄 PYTHON 神经网络——TENSORFLOW 双隐藏层自编码器设计处理MNIST手写数字数据集并使用TENSORBORD描绘神经网络数据2

    import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data os.envi ...

  2. 『TensorFlow』读书笔记_降噪自编码器

    『TensorFlow』降噪自编码器设计  之前学习过的代码,又敲了一遍,新的收获也还是有的,因为这次注释写的比较详尽,所以再次记录一下,具体的相关知识查阅之前写的文章即可(见上面链接). # Aut ...

  3. 吴裕雄 PYTHON 神经网络——TENSORFLOW 单隐藏层自编码器设计处理MNIST手写数字数据集并使用TensorBord描绘神经网络数据

    import os import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow ...

  4. 『TensorFlow』专题汇总

    TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训 ...

  5. 『TensorFlow』模型保存和载入方法汇总

    『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 ...

  6. 『TensorFlow』SSD源码学习_其一:论文及开源项目文档介绍

    一.论文介绍 读论文系列:Object Detection ECCV2016 SSD 一句话概括:SSD就是关于类别的多尺度RPN网络 基本思路: 基础网络后接多层feature map 多层feat ...

  7. 『TensorFlow』DCGAN生成动漫人物头像_下

    『TensorFlow』以GAN为例的神经网络类范式 『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上 『TensorFlow』通过代码理解gan网络_中 一.计算 ...

  8. 『TensorFlow』滑动平均

    滑动平均会为目标变量维护一个影子变量,影子变量不影响原变量的更新维护,但是在测试或者实际预测过程中(非训练时),使用影子变量代替原变量. 1.滑动平均求解对象初始化 ema = tf.train.Ex ...

  9. 『TensorFlow』流程控制

    『PyTorch』第六弹_最小二乘法对比PyTorch和TensorFlow TensorFlow 控制流程操作 TensorFlow 提供了几个操作和类,您可以使用它们来控制操作的执行并向图中添加条 ...

随机推荐

  1. luogu3978 [TJOI2015]概率论

    题目链接:洛谷 题目大意:求所有$n$个点的有根二叉树的叶子节点数总和/$n$个点的有根二叉树的个数. 数据范围:$n\leq 10^9$ 生成函数神题!!!!(我只是来水博客的) 首先$n$个点的有 ...

  2. Redis入门到高可用(二十一)——缓存的使用和设计

    一.缓存的收益与成本 1.收益 2.成本 二.使用场景 三.缓存的更新策略 四.缓存颗粒度控制 五.缓存穿透 六.无底洞问题 七.热点key的重建优化  

  3. 自动微分(AD)学习笔记

    1.自动微分(AD) 作者:李济深链接:https://www.zhihu.com/question/48356514/answer/125175491来源:知乎著作权归作者所有.商业转载请联系作者获 ...

  4. vue 自适应 Responsive 设计

    使用阿里的 lib-flexible 及 vue-meta 库: https://github.com/amfe/lib-flexible/ https://github.com/nuxt/vue-m ...

  5. 【JVM】-NO.111.JVM.1 -【JDK11 HashMap详解-1-hash()剖析】

    Style:Mac Series:Java Since:2018-09-10 End:2018-09-10 Total Hours:1 Degree Of Diffculty:5 Degree Of ...

  6. git 如何删除已经add的文件

    git rm --cached "文件" 参考: https://blog.csdn.net/kiss_the_sky/article/details/77921206

  7. rosetta对称性文件(rosetta symmetry file)的产生及应用

    针对对称性PDB 3UKM,使用make_symmdef_file.pl脚本,可以执行产生对称单元及对称文件: $> $ROSETTA3/src/apps/public/symmetry/mak ...

  8. 2019年度【计算机视觉&机器学习&人工智能】国际重要会议汇总

    简介 每年全世界都会举办很多计算机视觉(Computer Vision,CV). 机器学习(Machine Learning,ML).人工智能(Artificial Intelligence ,AI) ...

  9. 第四章 DOM节点操作

    1.什么是DOM:DOM(document object model)文档对象模型,把每一个元素看做是一个节点,然后对节点进行增删改查的操作 2.DOM的分类:(1)Core Dom:可以对html, ...

  10. IP地址和子网划分学习笔记之《IP地址详解》

    2018-05-03 18:47:37   在学习IP地址和子网划分前,必须对进制计数有一定了解,尤其是二进制和十进制之间的相互转换,对于我们掌握IP地址和子网的划分非常有帮助,可参看如下目录详文. ...