<Vector Calculus>(by Paul C, Matthews) Notes
现在流行用Exterior Caculus, 所以个人觉得Matthews这本书有点过时了。
想学Vector Calculus的话,推荐《Vector Calculus, Linear Algebra, and Differential Forms》,网上有第一版的电子版。虽然出到了第五版,但貌似vector caculus 和differential forms的部分没有什么改动。所以个人觉得用第一版学习vector caculus足以。
-----------------------------------
http://book.douban.com/annotation/36251494/
<<Vector Calculus>>
by Paul C, Matthews
P4
Since the quantity of |b|*cosθ represents the component of the vector b in thedirection of the vector a, the scalar a * b can be thought of as the magnitudeof a multiplied by the component of b in the direction of a
P7
the general form of the equation of a plane is: r * a = constant.
P11
| e1 e2 e3 |
a x b=| a1 a2 a3 |
| b1 b2 b3 |
v = Ω x r
P24
The equation of a line is: r = a + λu
The second equation of a line is: r x u = b = a x u
----------------------------------------------------
1.4 Scalar triple product ([a, b, c])
The dot and the cross can be interchanged:[a, b, c]≡a * b x c = a x b * c
The vectors a, b and c can be permuted cyclically:a * b x c = b * c x a = c * a x b
The scalar triple product can be written in the form of a determinant:
| a1 a2 a3 |
a * b x c=| b1 b2 b3 |
| c1 c2 c3 |
If any two of the vectors are equal, the scalar triple product is zero.
--------------------------------------------------------
1.5 Vector triple product a x (b x c)
a x (b x c) = (a * c)*b - (a * b)*c
(a x b) x c = -(b * c)*a + (c * a)*b
--------------------------------------------------------
1.6 Scalar fields and vector fields
A scalar or vector quantity is said be a field if it is a function of position.
--------------------------------------------------------
2.2.3 Conservative vector fields
A vector field F is said to be conservative if it has the property that the line integral of F around any closed curve C is zero:
An equivalent definition is that F is conservative if the line integral of Falong a curve only depends on the endpoints of the curve, not on the pathtaken by the curve
--------------------------------------------------------
2.3.2

3.1.2 Taylor series in more than one variable

3.2 Gradient of a scalar field

The symbol ∇ can be interpreted as a vector differential operator,where the term operator means that ∇ only has a meaning when it acts on some other quantity.
Theorem 3.1
Suppose that a vector field F is related to a scalar field Φ by F = ∇Φ and ∇ exists everywhere in some region D. Then F is conservative within D.Conversely, if F is conservative, then F can be written as the gradient of a scalar field, F = ∇Φ.
If a vector field F is conservative, the corresponding scalar field Φ which obeys F = ∇Φ is called the potential(势能) for F.
--------------------------------------------------
3.3.2 Laplacian of a scalar field

3.3.2 Laplacian of a scalar field

4.3 The alternating tensor εijk



5.1.1 Conservation of mass for a fluid
6.1 Orthogonal curvilinear coordinates
P100
Suppose a transformation is carried out from a Cartesian coordinate system (x1, x2, x3) to another coordinate system (u1, u2, u3)
e1 =(∂x/∂u1) / h1, h1 = | ∂x/∂u1 |
e2 =(∂x/∂u2) / h2, h2 = | ∂x/∂u2 |
e3 =(∂x/∂u3) / h3, h3 = | ∂x/∂u3 |
dS = h1 * h2 * du1 * du2
dV = h1 * h2 * h3 * du1 * du2 * du3
------------------------------------------------------------------
相关内容在《微积分学教程(第三卷)》(by 菲赫金哥尔茨)里使用Jacobi式阐述的:
16章
$4. 二重积分中的变量变换
603.平面区域的变换
604.例1)(极坐标的例子)
605.曲线坐标中面积的表示法
607.几何推演
609.二重积分中的变量变换
17章 曲面面积,曲面积分
619. 例2 (引入A,B,C)
626 曲面面积的存在及其计算
629 例14)球面极坐标的计算
18章 三重积分及多重积分
$3 三重积分中的变量变换
655. 空间的变换及曲线坐标
656 例1 圆柱坐标,例2球坐标
657 曲线坐标下的体积表示法 (得出曲面坐标下的体积元素)
659 几何推演
661 三重积分中的变量变换
------------------------------------------------------------------



Summary of Chapter 6
The system (u1, u2, u3) is orthogonal if ei * ej = δij.
------------------------------------
7. Cartesian Tensors
7.1 Coordinate transformations
A matrix with this property, that its inverse is equal to its transpose, is said to be orthogonal。
So far we have only considered a two-dimensional rotation of coordinates. Consider now a general three-dimensional rotation. For a position vector x = x1e1 + x2e2 + x3e3,
x' = e'i * x (x在e'i上的投影) = e'i * (e1*x1 + e2*x2 + e3*x3) = e'i * ei*xi

xi = Lji * x'j ..........................(7.6)
7.2 Vectors and scalars

A quantity is a tensor if each of the free suffices transforms according to the rule (7.4).Lij * Lkj = δik

7.3.3 Isotropic tensors
The two tensors δij and εijk have a special property. Their components are the same in all coordinate systems. A tensor with this property is said to be isotropic.
7.4 Physical examples of tensors
7.4.1 Ohm's law
This is why δik is said to be an isotropic tensor: it represents the relationship between two vectors that are always parallel, regardless of their direction.

----------------------------------------------
8 Applications of Vector Calculus

----------------------------------------------

----------------------------------------------
8.5 Fluid mechanics

----------------------------------------------

----------------------------------------------

----------------------------------------------

----------------------------------------------
Example 8.12
Choosing the x-axis to be parallel to the channel walls, the velocity u hasthe form u = (u, 0, 0). As the fluid is incompressible(所有点的速度(沿x轴)相同), ∇u = 0, so ∂u/∂x = 0.

<Vector Calculus>(by Paul C, Matthews) Notes的更多相关文章
- <<Vector Calculus>>笔记
现在流行用Exterior Caculus, 所以个人觉得Matthews这本书有点过时了. 想学Vector Calculus的话,推荐<Vector Calculus, Linear Alg ...
- Vector Calculus
Vector Fields Vector Function F(x,y,...)=P(x,y)i + Q(x,y)j + ... = <P(x,y), Q(x,y), ...> F=Pi ...
- 【Math for ML】向量微积分(Vector Calculus)
I. 向量梯度 假设有一个映射函数为\(f:R^n→R^m\)和一个向量\(x=[x_1,...,x_n]^T∈R^n\),那么对应的函数值的向量为\(f(x)=[f_1(x),...,f_m(x)] ...
- 目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019]
目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019] Ti ...
- Discrete.Differential.Geometry-An.Applied.Introduction(sig2008)笔记
-------------------------------------------------------------- Chapter 1: Introduction to Discrete D ...
- 机器学习、NLP、Python和Math最好的150余个教程(建议收藏)
编辑 | MingMing 尽管机器学习的历史可以追溯到1959年,但目前,这个领域正以前所未有的速度发展.最近,我一直在网上寻找关于机器学习和NLP各方面的好资源,为了帮助到和我有相同需求的人,我整 ...
- How do I learn mathematics for machine learning?
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning How do I learn mathematics f ...
- 超过 150 个最佳机器学习,NLP 和 Python教程
超过 150 个最佳机器学习,NLP 和 Python教程 微信号 & QQ:862251340微信公众号:coderpai简书地址:http://www.jianshu.com/p/2be3 ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
随机推荐
- android:Internet(volley)
public void getStringFromCloud(View view) { /*创建请求队列*/ RequestQueue queue = Volley.newRequestQueue(t ...
- commons-lang3工具类学习(三)
六.ObjectUtils Object工具类 allNotNull(Object... values) 检查所有元素是否为空,返回一个boolean 如果有一个元素为空返回false,所有元素不为空 ...
- 企业面试题:Buffer与cache的区别?
buffer缓冲 cache是缓存. 写缓冲,读缓存.简单点说,buffer是即将要被写入磁盘的,而cache是被从磁盘中读出来的.缓冲(buffers)是根据磁盘的读写设计的,把分散的写操作集中进行 ...
- SpringMVC 搭建遇到的坑
1. Caused by: org.xml.sax.SAXParseException; lineNumber: 8; columnNumber: 60; cvc-complex-type.2.4.c ...
- Android : 跟我学Binder --- (3) C程序示例
目录: Android : 跟我学Binder --- (1) 什么是Binder IPC?为何要使用Binder机制? Android : 跟我学Binder --- (2) AIDL分析及手动实现 ...
- sql多表查询(单表查询略过)
表library: 表borrow: 表reader: 1.等值连接:(常用) 原理:将多张表组合成一个逻辑大表,即字段相加记录相乘(笛卡尔积). 语法:select * from 表A,表B whe ...
- LAMP架构(二)
第十八次课 LAMP架构(二) 目录 一.Apache默认虚拟主机 二.Apache用户认证 三.域名跳转 四.Apache访问日志 五.访问日志不记录静态文件 六.访问日志切割 七.静态元素过期时间 ...
- 【IDEA&&Eclipse】1、为何 IntelliJ IDEA 比 Eclipse 更适合于专业java开发者
圣战 有一些没有唯一正确答案的“永恒”的问题,例如哪个更好:是Windows还是Linux,Java还是C#:谁更强壮:Chuck Norris还是Van Damme. 其中的一个圣战便是Java I ...
- L330 Black hole picture captured for first time in space ‘breakthrough’
Black hole picture captured for first time in space ‘breakthrough’ Astronomers have captured the fir ...
- 互联网创业公司如何防御 DDoS 攻击?采用CDN服务
收集了发表于2015年 攻击者是控制一个足够大的分布式集群来发起攻击,各种杂七杂八的包,什么都会有.根本不在乎你开的什么服务,也没那耐心分析你有什么服务.比如哪怕你根本没开UDP的任何服务,但他就是发 ...