现在流行用Exterior Caculus, 所以个人觉得Matthews这本书有点过时了。

想学Vector Calculus的话,推荐《Vector Calculus, Linear Algebra, and Differential Forms》,网上有第一版的电子版。虽然出到了第五版,但貌似vector caculus 和differential forms的部分没有什么改动。所以个人觉得用第一版学习vector caculus足以。

-----------------------------------

http://book.douban.com/annotation/36251494/

<<Vector Calculus>>
by Paul C, Matthews

P4

Since the quantity of |b|*cosθ represents the component of the vector b in thedirection of the vector a, the scalar a * b can be thought of as the magnitudeof a multiplied by the component of b in the direction of a

P7

the general form of the equation of a plane is: r * a = constant.

P11

| e1 e2 e3 |
a x b=| a1 a2 a3 |
          | b1 b2 b3 |

v = Ω x r

P24

The equation of a line is: r = a + λu

The second equation of a line is: r x u = b = a x u

----------------------------------------------------

1.4 Scalar triple product ([a, b, c])

The dot and the cross can be interchanged:[a, b, c]≡a * b x c = a x b * c

The vectors a, b and c can be permuted cyclically:a * b x c = b * c x a = c * a x b

The scalar triple product can be written in the form of a determinant:

| a1 a2 a3 |
a * b x c=| b1 b2 b3 |
               | c1 c2 c3 |

If any two of the vectors are equal, the scalar triple product is zero.

--------------------------------------------------------

1.5 Vector triple product     a x (b x c)

a x (b x c) = (a * c)*b - (a * b)*c

(a x b) x c = -(b * c)*a + (c * a)*b

--------------------------------------------------------

1.6 Scalar fields and vector fields

A scalar or vector quantity is said be a field if it is a function of position.

--------------------------------------------------------

2.2.3 Conservative vector fields

A vector field F is said to be conservative if it has the property that the line integral of F around any closed curve C is zero:

An equivalent definition is that F is conservative if the line integral of Falong a curve only depends on the endpoints of the curve, not on the pathtaken by the curve

--------------------------------------------------------

2.3.2

3.1.2 Taylor series in more than one variable

3.2 Gradient of a scalar field

The symbol ∇ can be interpreted as a vector differential operator,where the term operator means that ∇ only has a meaning when it acts on some other quantity.

Theorem 3.1

Suppose that a vector field F is related to a scalar field Φ by F = ∇Φ and ∇ exists everywhere in some region D. Then F is conservative within D.Conversely, if F is conservative, then F can be written as the gradient of a scalar field, F = ∇Φ.

If a vector field F is conservative, the corresponding scalar field Φ which obeys F = ∇Φ is called the potential(势能) for F.

--------------------------------------------------

3.3.2 Laplacian of a scalar field


3.3.2 Laplacian of a scalar field

4.3 The alternating tensor εijk

5.1.1 Conservation of mass for a fluid

6.1 Orthogonal curvilinear coordinates

P100

Suppose a transformation is carried out from a Cartesian coordinate system (x1, x2, x3) to another coordinate system (u1, u2, u3)

e1 =(∂x/∂u1) / h1, h1 = | ∂x/∂u1 |

e2 =(∂x/∂u2) / h2, h2 = | ∂x/∂u2 |

e3 =(∂x/∂u3) / h3, h3 = | ∂x/∂u3 |

dS = h1 * h2 * du1 * du2

dV = h1 * h2 * h3 * du1 * du2 * du3

------------------------------------------------------------------

相关内容在《微积分学教程(第三卷)》(by 菲赫金哥尔茨)里使用Jacobi式阐述的:

16章

$4. 二重积分中的变量变换

603.平面区域的变换

604.例1)(极坐标的例子)

605.曲线坐标中面积的表示法

607.几何推演

609.二重积分中的变量变换

17章 曲面面积,曲面积分

619. 例2 (引入A,B,C)

626 曲面面积的存在及其计算

629 例14)球面极坐标的计算

18章 三重积分及多重积分

$3 三重积分中的变量变换

655. 空间的变换及曲线坐标

656 例1 圆柱坐标,例2球坐标

657 曲线坐标下的体积表示法 (得出曲面坐标下的体积元素)

659 几何推演

661 三重积分中的变量变换

------------------------------------------------------------------

Summary of Chapter 6

The system (u1, u2, u3) is orthogonal if ei * ej = δij.

------------------------------------

7. Cartesian Tensors

7.1 Coordinate transformations

A matrix with this property, that its inverse is equal to its transpose, is said to be orthogonal。

So far we have only considered a two-dimensional rotation of coordinates. Consider now a general three-dimensional rotation. For a position vector x = x1e1 + x2e2 + x3e3,

x' = e'i * x (x在e'i上的投影) = e'i * (e1*x1 + e2*x2 + e3*x3) = e'i * ei*xi

xi = Lji * x'j ..........................(7.6)

7.2 Vectors and scalars

A quantity is a tensor if each of the free suffices transforms according to the rule (7.4).Lij * Lkj = δik

7.3.3 Isotropic tensors

The two tensors δij and εijk have a special property. Their components are the same in all coordinate systems. A tensor with this property is said to be isotropic.

7.4 Physical examples of tensors

7.4.1 Ohm's law

This is why δik is said to be an isotropic tensor: it represents the relationship between two vectors that are always parallel, regardless of their direction.

----------------------------------------------

8 Applications of Vector Calculus

----------------------------------------------

----------------------------------------------

8.5 Fluid mechanics

----------------------------------------------

----------------------------------------------

----------------------------------------------

----------------------------------------------

Example 8.12

Choosing the x-axis to be parallel to the channel walls, the velocity u hasthe form u = (u, 0, 0). As the fluid is incompressible(所有点的速度(沿x轴)相同), ∇u = 0, so ∂u/∂x = 0.

<Vector Calculus>(by Paul C, Matthews) Notes的更多相关文章

  1. <<Vector Calculus>>笔记

    现在流行用Exterior Caculus, 所以个人觉得Matthews这本书有点过时了. 想学Vector Calculus的话,推荐<Vector Calculus, Linear Alg ...

  2. Vector Calculus

    Vector Fields Vector Function F(x,y,...)=P(x,y)i + Q(x,y)j + ... = <P(x,y), Q(x,y), ...> F=Pi ...

  3. 【Math for ML】向量微积分(Vector Calculus)

    I. 向量梯度 假设有一个映射函数为\(f:R^n→R^m\)和一个向量\(x=[x_1,...,x_n]^T∈R^n\),那么对应的函数值的向量为\(f(x)=[f_1(x),...,f_m(x)] ...

  4. 目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019]

    目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019] Ti ...

  5. Discrete.Differential.Geometry-An.Applied.Introduction(sig2008)笔记

    -------------------------------------------------------------- Chapter 1: Introduction to Discrete D ...

  6. 机器学习、NLP、Python和Math最好的150余个教程(建议收藏)

    编辑 | MingMing 尽管机器学习的历史可以追溯到1959年,但目前,这个领域正以前所未有的速度发展.最近,我一直在网上寻找关于机器学习和NLP各方面的好资源,为了帮助到和我有相同需求的人,我整 ...

  7. How do I learn mathematics for machine learning?

    https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics f ...

  8. 超过 150 个最佳机器学习,NLP 和 Python教程

    超过 150 个最佳机器学习,NLP 和 Python教程 微信号 & QQ:862251340微信公众号:coderpai简书地址:http://www.jianshu.com/p/2be3 ...

  9. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

随机推荐

  1. Python3解析dex文件

    一.说明 1.1 背景说明 看<加密与解密>的时候反复听说“PE文件格式”,到Android安全兴起就不断听说“dex文件格式”.意思是看得懂的,但自己不能手解析一番总觉得不踏实,所以决定 ...

  2. trap(陷井)

    if True: x = 15 print(x)print(x) # 可见 if 语句,不是一个代码块,因为代码块有独立的作用域,代码块结束时,会释放变量 l1 = [1,2,3,4]print(id ...

  3. 网络编程—网络基础概览、socket,TCP/UDP协议

    网络基础概览 socket概览 socket模块—TCP/UDP的实现 TCP/UDP总结 网络基础概览 osi七层协议各层主要的协议 # 物理层传输电信号1010101010 # 数据链路层,以太网 ...

  4. C/C++三目运算符

    三目运算符,又称条件运算符,是计算机语言(C,C++,Java等)的重要组成部分.它是唯一有3个操作数的运算符,所以有时又称为三元运算符.一般来说,三目运算符的结合性是右结合的. 对于条件表达式b ? ...

  5. java 创建string对象机制 字符串缓冲池 字符串拼接机制 字符串中intern()方法

    字符串常量池:字符串常量池在方法区中 为了优化空间,为了减少在JVM中创建的字符串的数量,字符串类维护了一个字符串池,每当代码创建字符串常量时,JVM会首先检查字符串常量池.如果字符串已经存在池中,就 ...

  6. MYSQL-8.0.11-WINX64(免安装版)配置

    1. 解压zip包到安装目录 首先,将mysql-8.0.11-winx64.zip 解压缩到 安装D:/mysql-8.0.11-winx64 目录下, 2.配置文件 在安装根目录下添加 my.in ...

  7. 获取map集合中key、value

    获取Map集合类中key.value的两种方法 方法一:利用Set集合中的keySet()方法 Map<String,String> map = new HashMap<String ...

  8. “必须执行Init_Clk函数,才能采集到二氧化碳接口485数据的问题”的解决

    这个问题困扰了我很长一段时间,而且如果这个问题不解决,就有一个无法调和的矛盾:执行Init_Clk函数,能采集到二氧化碳接口485数据,但是功耗大:不执行Init_Clk函数,不能采集到二氧化碳接口4 ...

  9. python 数据库查询

    查询多个为空返回是() 查询一个为空返回是None

  10. i3wm 入门

    安装 所用Linux版本为kali-rolling,直接安装 apt install i3 设置为xinit的启动对像 修改 ~/.xserverrc #!/bin/sh exec /usr/bin/ ...