<Vector Calculus>(by Paul C, Matthews) Notes
现在流行用Exterior Caculus, 所以个人觉得Matthews这本书有点过时了。
想学Vector Calculus的话,推荐《Vector Calculus, Linear Algebra, and Differential Forms》,网上有第一版的电子版。虽然出到了第五版,但貌似vector caculus 和differential forms的部分没有什么改动。所以个人觉得用第一版学习vector caculus足以。
-----------------------------------
http://book.douban.com/annotation/36251494/
<<Vector Calculus>>
by Paul C, Matthews
P4
Since the quantity of |b|*cosθ represents the component of the vector b in thedirection of the vector a, the scalar a * b can be thought of as the magnitudeof a multiplied by the component of b in the direction of a
P7
the general form of the equation of a plane is: r * a = constant.
P11
| e1 e2 e3 |
a x b=| a1 a2 a3 |
| b1 b2 b3 |
v = Ω x r
P24
The equation of a line is: r = a + λu
The second equation of a line is: r x u = b = a x u
----------------------------------------------------
1.4 Scalar triple product ([a, b, c])
The dot and the cross can be interchanged:[a, b, c]≡a * b x c = a x b * c
The vectors a, b and c can be permuted cyclically:a * b x c = b * c x a = c * a x b
The scalar triple product can be written in the form of a determinant:
| a1 a2 a3 |
a * b x c=| b1 b2 b3 |
| c1 c2 c3 |
If any two of the vectors are equal, the scalar triple product is zero.
--------------------------------------------------------
1.5 Vector triple product a x (b x c)
a x (b x c) = (a * c)*b - (a * b)*c
(a x b) x c = -(b * c)*a + (c * a)*b
--------------------------------------------------------
1.6 Scalar fields and vector fields
A scalar or vector quantity is said be a field if it is a function of position.
--------------------------------------------------------
2.2.3 Conservative vector fields
A vector field F is said to be conservative if it has the property that the line integral of F around any closed curve C is zero:
An equivalent definition is that F is conservative if the line integral of Falong a curve only depends on the endpoints of the curve, not on the pathtaken by the curve
--------------------------------------------------------
2.3.2
3.1.2 Taylor series in more than one variable
3.2 Gradient of a scalar field
The symbol ∇ can be interpreted as a vector differential operator,where the term operator means that ∇ only has a meaning when it acts on some other quantity.
Theorem 3.1
Suppose that a vector field F is related to a scalar field Φ by F = ∇Φ and ∇ exists everywhere in some region D. Then F is conservative within D.Conversely, if F is conservative, then F can be written as the gradient of a scalar field, F = ∇Φ.
If a vector field F is conservative, the corresponding scalar field Φ which obeys F = ∇Φ is called the potential(势能) for F.
--------------------------------------------------
3.3.2 Laplacian of a scalar field
3.3.2 Laplacian of a scalar field
4.3 The alternating tensor εijk
5.1.1 Conservation of mass for a fluid
6.1 Orthogonal curvilinear coordinates
P100
Suppose a transformation is carried out from a Cartesian coordinate system (x1, x2, x3) to another coordinate system (u1, u2, u3)
e1 =(∂x/∂u1) / h1, h1 = | ∂x/∂u1 |
e2 =(∂x/∂u2) / h2, h2 = | ∂x/∂u2 |
e3 =(∂x/∂u3) / h3, h3 = | ∂x/∂u3 |
dS = h1 * h2 * du1 * du2
dV = h1 * h2 * h3 * du1 * du2 * du3
------------------------------------------------------------------
相关内容在《微积分学教程(第三卷)》(by 菲赫金哥尔茨)里使用Jacobi式阐述的:
16章
$4. 二重积分中的变量变换
603.平面区域的变换
604.例1)(极坐标的例子)
605.曲线坐标中面积的表示法
607.几何推演
609.二重积分中的变量变换
17章 曲面面积,曲面积分
619. 例2 (引入A,B,C)
626 曲面面积的存在及其计算
629 例14)球面极坐标的计算
18章 三重积分及多重积分
$3 三重积分中的变量变换
655. 空间的变换及曲线坐标
656 例1 圆柱坐标,例2球坐标
657 曲线坐标下的体积表示法 (得出曲面坐标下的体积元素)
659 几何推演
661 三重积分中的变量变换
------------------------------------------------------------------
Summary of Chapter 6
The system (u1, u2, u3) is orthogonal if ei * ej = δij.
------------------------------------
7. Cartesian Tensors
7.1 Coordinate transformations
A matrix with this property, that its inverse is equal to its transpose, is said to be orthogonal。
So far we have only considered a two-dimensional rotation of coordinates. Consider now a general three-dimensional rotation. For a position vector x = x1e1 + x2e2 + x3e3,
x' = e'i * x (x在e'i上的投影) = e'i * (e1*x1 + e2*x2 + e3*x3) = e'i * ei*xi
xi = Lji * x'j ..........................(7.6)
7.2 Vectors and scalars
A quantity is a tensor if each of the free suffices transforms according to the rule (7.4).Lij * Lkj = δik
7.3.3 Isotropic tensors
The two tensors δij and εijk have a special property. Their components are the same in all coordinate systems. A tensor with this property is said to be isotropic.
7.4 Physical examples of tensors
7.4.1 Ohm's law
This is why δik is said to be an isotropic tensor: it represents the relationship between two vectors that are always parallel, regardless of their direction.
----------------------------------------------
8 Applications of Vector Calculus
----------------------------------------------
----------------------------------------------
8.5 Fluid mechanics
----------------------------------------------
----------------------------------------------
----------------------------------------------
----------------------------------------------
Example 8.12
Choosing the x-axis to be parallel to the channel walls, the velocity u hasthe form u = (u, 0, 0). As the fluid is incompressible(所有点的速度(沿x轴)相同), ∇u = 0, so ∂u/∂x = 0.
<Vector Calculus>(by Paul C, Matthews) Notes的更多相关文章
- <<Vector Calculus>>笔记
现在流行用Exterior Caculus, 所以个人觉得Matthews这本书有点过时了. 想学Vector Calculus的话,推荐<Vector Calculus, Linear Alg ...
- Vector Calculus
Vector Fields Vector Function F(x,y,...)=P(x,y)i + Q(x,y)j + ... = <P(x,y), Q(x,y), ...> F=Pi ...
- 【Math for ML】向量微积分(Vector Calculus)
I. 向量梯度 假设有一个映射函数为\(f:R^n→R^m\)和一个向量\(x=[x_1,...,x_n]^T∈R^n\),那么对应的函数值的向量为\(f(x)=[f_1(x),...,f_m(x)] ...
- 目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019]
目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019] Ti ...
- Discrete.Differential.Geometry-An.Applied.Introduction(sig2008)笔记
-------------------------------------------------------------- Chapter 1: Introduction to Discrete D ...
- 机器学习、NLP、Python和Math最好的150余个教程(建议收藏)
编辑 | MingMing 尽管机器学习的历史可以追溯到1959年,但目前,这个领域正以前所未有的速度发展.最近,我一直在网上寻找关于机器学习和NLP各方面的好资源,为了帮助到和我有相同需求的人,我整 ...
- How do I learn mathematics for machine learning?
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning How do I learn mathematics f ...
- 超过 150 个最佳机器学习,NLP 和 Python教程
超过 150 个最佳机器学习,NLP 和 Python教程 微信号 & QQ:862251340微信公众号:coderpai简书地址:http://www.jianshu.com/p/2be3 ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
随机推荐
- Android:手把手教你 实现Activity 与 Fragment 相互通信,发送字符串信息(含Demo)
前言Activity 与 Fragment 的使用在Android开发中非常多今天,我将主要讲解 Activity 与 Fragment 如何进行通信,实际上是要解决两个问题: Activity 如何 ...
- js创建对象的三种方法
1.使用对象初始化器:{} var person = {....} 2 var person=new object() function person(参数) { this.参数=... } var ...
- mysql以zip安装,解决the service already exists
mysql以zip安装, mysqld -install 报错:The service already exists 原因是之前安装了以后卸载了,服务没删掉. 解决方法: sc query m ...
- 第5天(半天)【shell编程初步、grep及正则表达式】
第5天(半天)[shell编程初步.grep及正则表达式] shell编程初步(01)_recv shell脚本:文本文件 #!:/bin/bash #!:/usr/bin/python #!:/us ...
- 牛客练习赛23CD
链接:https://www.nowcoder.com/acm/contest/156/C 来源:牛客网 题目描述 托米完成了1317的上一个任务,十分高兴,可是考验还没有结束 说话间1317给了托米 ...
- Win10系列:C#应用控件基础8
ToggleSwitch控件 在应用程序中ToggleSwitch控件可以模拟一个允许用户在启用和禁用两种状态之间进行切换的物理开关,ToggleSwitch控件的功能与我们在日常生活中所使用的电源开 ...
- decode encode
https://blog.csdn.net/crylearner/article/details/38521685,python常用的十进制.16进制.字符串.字节串之间的转换
- Saiku关于MDX过滤的使用(九)
Saiku查询设定:Saiku查询数据时,每次都是全量查询的,我们现在需要默认展示近一周的数据. 通过编写使用MDX表达式进行过滤 通过编写MDX表达式,添加新的指标信息对一周以内的数据进行标识 (其 ...
- Centos7 systemctl和防火墙firewalld命令(参考https://www.cnblogs.com/marso/archive/2018/01/06/8214927.html)
一.防火墙的开启.关闭.禁用命令 (1)设置开机启用防火墙:systemctl enable firewalld.service (2)设置开机禁用防火墙:systemctl disable fire ...
- Opencv undefined reference to `cv::imread() Ubuntu编译
Ubuntu下编译一个C++文件,C++源程序中使用了opencv,opencv的安装没有问题,但是在编译的过程中出现如下错误: undefined reference to `cv::imread( ...