时间序列异常检测算法S-H-ESD
1. 基于统计的异常检测
Grubbs' Test
Grubbs' Test为一种假设检验的方法,常被用来检验服从正太分布的单变量数据集(univariate data set)\(Y\) 中的单个异常值。若有异常值,则其必为数据集中的最大值或最小值。原假设与备择假设如下:
\(H_0\): 数据集中没有异常值
\(H_1\): 数据集中有一个异常值
Grubbs' Test检验假设的所用到的检验统计量(test statistic)为
\[
G = \frac{\max |Y_i - \overline{Y}|}{s}
\]
其中,\(\overline{Y}\)为均值,\(s\)为标准差。原假设\(H_0\)被拒绝,当检验统计量满足以下条件
\[
G > \frac{(N-1)}{\sqrt{N}}\sqrt{\frac{ (t_{\alpha/(2N), N-2})^2}{N-2 + (t_{\alpha/(2N), N-2})^2}}
\]
其中,\(N\)为数据集的样本数,\(t_{\alpha/(2N), N-2}\)为显著度(significance level)等于\(\alpha/(2N)\)、自由度(degrees of freedom)等于\(N-2\)的t分布临界值。实际上,Grubbs' Test可理解为检验最大值、最小值偏离均值的程度是否为异常。
ESD
在现实数据集中,异常值往往是多个而非单个。为了将Grubbs' Test扩展到\(k\)个异常值检测,则需要在数据集中逐步删除与均值偏离最大的值(为最大值或最小值),同步更新对应的t分布临界值,检验原假设是否成立。基于此,Rosner提出了Grubbs' Test的泛化版ESD(Extreme Studentized Deviate test)。算法流程如下:
- 计算与均值偏离最远的残差,注意计算均值时的数据序列应是删除上一轮最大残差样本数据后;
\begin{equation}
R_j = \frac{\max_i |Y_i - \overline{Y'}|}{s}, \quad 1 \leq j \leq k
\label{eq:esd_test}
\end{equation}
- 计算临界值(critical value);
\[
\lambda_j = \frac{(n-j) * t_{p,n-j-1}}{\sqrt{(n-j-1+t_{p,n-j-1}^2)(n-j+1)}}, \quad 1 \leq j \leq k
\]
检验原假设,比较检验统计量与临界值;若\(R_i > \lambda_j\),则原假设\(H_0\)不成立,该样本点为异常点;
重复以上步骤\(k\)次至算法结束。
2. 时间序列的异常检测
鉴于时间序列数据具有周期性(seasonal)、趋势性(trend),异常检测时不能作为孤立的样本点处理;故而Twitter的工程师提出了S- ESD (Seasonal ESD)与S-H-ESD (Seasonal Hybrid ESD)算法,将ESD扩展到时间序列数据。
S-ESD
STL将时间序列数据分解为趋势分量、周期分量和余项分量。想当然的解法——将ESD运用于STL分解后的余项分量中,即可得到时间序列上的异常点。但是,我们会发现在余项分量中存在着部分假异常点(spurious anomalies)。如下图所示:
在红色矩形方框中,向下突起点被误报为异常点。为了解决这种假阳性降低准确率的问题,S-ESD算法用中位数(median)替换掉趋势分量;余项计算公式如下:
\[
R_X = X - S_X- \tilde{X}
\]
其中,\(X\)为原时间序列数据,\(S_X\)为STL分解后的周期分量,\(\tilde{X}\)为\(X\)的中位数。
S-H-ESD
由于个别异常值会极大地拉伸均值和方差,从而导致S-ESD未能很好地捕获到部分异常点,召回率偏低。为了解决这个问题,S-H-ESD采用了更具鲁棒性的中位数与绝对中位差(Median Absolute Deviation, MAD)替换公式\eqref{eq:esd_test}中的均值与标准差。MAD的计算公式如下:
\[
MAD = median(|X_i - median(X)|)
\]
S-H-ESD的Python实现有pyculiarity,时间序列异常检测数据集有Yahoo公开的A Labeled Anomaly Detection Dataset。
3. 参考资料
[1] Hochenbaum, Jordan, Owen S. Vallis, and Arun Kejariwal. "Automatic Anomaly Detection in the Cloud Via Statistical Learning." arXiv preprint arXiv:1704.07706 (2017).
时间序列异常检测算法S-H-ESD的更多相关文章
- 机器学习:异常检测算法Seasonal Hybrid ESD及R语言实现
Twritters的异常检测算法(Anomaly Detection)做的比较好,Seasonal Hybrid ESD算法是先用STL把序列分解,考察残差项.假定这一项符合正态分布,然后就可以用Ge ...
- 异常检测算法--Isolation Forest
南大周志华老师在2010年提出一个异常检测算法Isolation Forest,在工业界很实用,算法效果好,时间效率高,能有效处理高维数据和海量数据,这里对这个算法进行简要总结. iTree 提到森林 ...
- 异常检测算法:Isolation Forest
iForest (Isolation Forest)是由Liu et al. [1] 提出来的基于二叉树的ensemble异常检测算法,具有效果好.训练快(线性复杂度)等特点. 1. 前言 iFore ...
- kaggle信用卡欺诈看异常检测算法——无监督的方法包括: 基于统计的技术,如BACON *离群检测 多变量异常值检测 基于聚类的技术;监督方法: 神经网络 SVM 逻辑回归
使用google翻译自:https://software.seek.intel.com/dealing-with-outliers 数据分析中的一项具有挑战性但非常重要的任务是处理异常值.我们通常将异 ...
- 基于RRCF(robust random cut forest)的时间序列异常检测流程
摘要:RRCF是亚马逊提出的一个流式异常检测算法,是对孤立森林的改进,可对时序或非时序数据进行异常检测.本文是我从事AIOps研发工作时所做的基于RRCF的时序异常检测方案. 1. 数据格式 ...
- 【机器学习】异常检测算法(I)
在给定的数据集,我们假设数据是正常的 ,现在需要知道新给的数据Xtest中不属于该组数据的几率p(X). 异常检测主要用来识别欺骗,例如通过之前的数据来识别新一次的数据是否存在异常,比如根据一个用户以 ...
- 如何开发一个异常检测系统:使用什么特征变量(features)来构建异常检测算法
如何构建与选择异常检测算法中的features 如果我的feature像图1所示的那样的正态分布图的话,我们可以很高兴地将它送入异常检测系统中去构建算法. 如果我的feature像图2那样不是正态分布 ...
- 异常检测(Anomaly detection): 异常检测算法(应用高斯分布)
估计P(x)的分布--密度估计 我们有m个样本,每个样本有n个特征值,每个特征都分别服从不同的高斯分布,上图中的公式是在假设每个特征都独立的情况下,实际无论每个特征是否独立,这个公式的效果都不错.连乘 ...
- 异常检测算法的Octave仿真
在基于高斯分布的异常检测算法一文中,详细给出了异常检测算法的原理及其公式,本文为该算法的Octave仿真.实例为,根据训练样例(一组网络服务器)的吞吐量(Throughput)和延迟时间(Latenc ...
随机推荐
- hdu1598 find the most comfortable road (枚举)+【并查集】
<题目链接> 题目大意: XX星有许多城市,城市之间通过一种奇怪的高速公路SARS(Super Air Roam Structure---超级空中漫游结构)进行交流,每条SARS都对行驶在 ...
- basename
我使用过的Linux命令之basename - 去掉文件名的目录和后缀 本文链接:http://codingstandards.iteye.com/blog/840784 (转载请注明出处) 用途 ...
- linux 学习笔记 groupadd创建组
1> groupadd -g test2 2>usermod -d /home/test -G test2 test 3>su user 4>groups 注意:root用户才 ...
- 解决ant Design dva ajax跨越请求 (status=0)
今天实现了antd作为前端展现,python flask作为后端的数据填充,完全两个独立的服务:过程中遇到ajax跨越请求问题,导致status一直等于0,原来是这么写的: xmlhttp.open( ...
- C#循环语句整理
for.while.do while和switch暂时没发现与c++的不同,这里只整理foreach. foreach foreach的作用是遍历集合中的所有元素.foreach语句中的表达式由关键字 ...
- VS Code编写Python3 insert 数据库插入无效也不报错的坑~.~
标题最近在开发中需要用到web端开发工具.需要用python工具.偶然发现微软的良心之作:Visual Studio Code,这个大小才几十兆的轻量级代码编辑器,功能却是重量级的,通过插件的方法,, ...
- 解决IDEA Springboot项目sql文件打开提示No data sources are configured to run this SQL and provide advanced的问题
Idea2018的Springboot项目,如果里面有.sql文件,打开后,会提示"No data sources are configured to run this SQL and pr ...
- sqlserver 为表添加一个自增主键
alter table person add id int primary key identity(1,1) not null
- 3ds max学习笔记(二)--查看视点
查看视点 文件 --打开 --指南文件--坦克(.max文件即可) 1.利用透视图(和眼睛看到的世界很相似)查看 2.alt+w :最大化显示(最大化视角切换按钮: ) 3.缩放视点:滚动鼠标滚轮;匀 ...
- 深入理解JVM(6)——JVM性能调优实战
如何在高性能服务器上进行JVM调优:以便充分利用高性能服务器的硬件资源,有两种JVM调优方案. 一. 采用64位操作系统,并为JVM分配大内存 分析:如果JVM中堆内存太小,那么就会频繁 ...