根据组合意义,有nk=ΣC(n,i)*i!*S(k,i) (i=0~k),即将k个有标号球放进n个有标号盒子的方案数=在n个盒子中选i个将k个有标号球放入并且每个盒子至少有一个球。

  回到本题,可以令f[i][j]表示ΣC(dis(i,k),j) (k为i子树中节点),通过C(i,j)=C(i-1,j)+C(i-1,j-1)转移。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 50010
#define K 155
#define P 10007
int n,m,l,now,A,B,Q,tmp,p[N],t=;
int f[N][K],S[K][K],fac[K],ans[N];
struct data{int to,nxt;
}edge[N<<];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs(int k,int from)
{
f[k][]=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from)
{
dfs(edge[i].to,k);
f[k][]=(f[k][]+f[edge[i].to][])%P;
for (int j=;j<=m;j++)
f[k][j]=(f[k][j]+f[edge[i].to][j]+f[edge[i].to][j-])%P;
}
}
void getans(int k,int from)
{
for (int j=;j<=m;j++)
ans[k]=(ans[k]+f[k][j]*fac[j]%P*S[m][j])%P;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from)
{
for (int j=m;j>=;j--)
f[edge[i].to][j]=((f[k][j]-f[edge[i].to][j-]+f[k][j-]-f[edge[i].to][j-]-f[edge[i].to][j-])%P+P)%P;
f[edge[i].to][]=((f[k][]-f[edge[i].to][]+f[k][]-f[edge[i].to][])%P+P)%P;
f[edge[i].to][]=n;
getans(edge[i].to,k);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2159.in","r",stdin);
freopen("bzoj2159.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),l=read(),now=read(),A=read(),B=read(),Q=read();
for (int i=;i<n;i++)
{
now=(now*A+B)%Q;
tmp=(i<l)?i:l;
int x=i-now%tmp,y=i+;
addedge(x,y),addedge(y,x);
}
dfs(,);
fac[]=;for (int i=;i<=m;i++) fac[i]=fac[i-]*i%P;
S[][]=;
for (int i=;i<=m;i++)
for (int j=;j<=i;j++)
S[i][j]=(S[i-][j-]+S[i-][j]*j)%P;
getans(,);
for (int i=;i<=n;i++) printf("%d\n",ans[i]);
return ;
}

BZOJ2159 Crash的文明世界(树形dp+斯特林数)的更多相关文章

  1. [国家集训队] Crash 的文明世界(第二类斯特林数)

    题目 [国家集训队] Crash 的文明世界 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 \[\begin{aligned} ans_x&=\sum\limi ...

  2. BZOJ2159 Crash的文明世界——树上DP&&第二类Stirling数

    题意 给定一个有 $n$ 个结点的树,设 $S(i)$ 为第 $i$ 个结点的“指标值”,定义为 $S(i)=\sum_{i=1}^{n}dist(i,j)^k$,$dist(i, j)$ 为结点 $ ...

  3. BZOJ 2159: Crash 的文明世界 第二类斯特林数+树形dp

    这个题非常巧妙啊~ #include <bits/stdc++.h> #define M 170 #define N 50003 #define mod 10007 #define LL ...

  4. [BZOJ2159]Crash的文明世界(斯特林数+树形DP)

    题意:给定一棵树,求$S(i)=\sum_{j=1}^{n}dist(i,j)^k$.题解:根据斯特林数反演得到:$n^m=\sum_{i=0}^{n}C(n,i)\times i!\times S( ...

  5. BZOJ2159 : Crash 的文明世界

    $x^k=\sum_{i=1}^k Stirling2(k,i)\times i!\times C(x,i)$ 设$f[i][j]=\sum_{k=1}^n C(dist(i,k),j)$. 则可以利 ...

  6. 题解 [BZOJ2159] Crash的文明世界

    题面 解析 这题一眼换根DP啊 首先,我们考虑一下如何转换\(n^m\)这个式子, 先把式子摆出来吧:\(n^m=\sum_{j=0}^mS(m,j)C_n^jj!\) 其中\(S(m,j)\)表示第 ...

  7. BZOJ2159 Crash 的文明世界 【第二类斯特林数 + 树形dp】

    题目链接 BZOJ2159 题解 显然不能直接做点分之类的,观察式子中存在式子\(n^k\) 可以考虑到 \[n^k = \sum\limits_{i = 0} \begin{Bmatrix} k \ ...

  8. BZOJ2159 Crash的文明世界

    Description 传送门 给你一个n个点的树,边权为1. 对于每个点u, 求:\(\sum_{i = 1}^{n} distance(u, i)^{k}\) $ n \leq 50000, k ...

  9. 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)

    [BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...

随机推荐

  1. Saltstack管理对象属性之grains和pillar组件

    Grains组件 Grains是saltstack记录minion的一些静态信息组件,可以简单的理解为grains里面记录着每台minion的一些常用的属性,比如cpu.内存.磁盘.网络信息等,可以通 ...

  2. 开放的dae模型

    从网上看到了这段代码,就Copy过来了. 其实面对dae这种开放的模型格式,我们可以做很多事情,就像通常的XML文件一样. //------------------------------------ ...

  3. Java实现几种常见排序方法

    日常操作中常见的排序方法有:冒泡排序.快速排序.选择排序.插入排序.希尔排序,甚至还有基数排序.鸡尾酒排序.桶排序.鸽巢排序.归并排序等. 以下常见算法的定义 1. 插入排序:插入排序基本操作就是将一 ...

  4. oracle if/else功能的实现的3种写法

    转载:oracle中if/else功能的实现的3种写法 以下是内容留存: 1.标准sql规范 一.单个IF . if a=... then ......... end if; . if a=... t ...

  5. (转) Ubuntu 更改文件夹及子文件夹权限

    Linux系统下如何修改文档及文件夹(含子文件夹)权限,我们来看一下. 一 介绍: 可以使用命令chmod来为文件或目录赋予权限.Linux/Unix 的档案存取权限分为三级 : 档案拥有者.群组.其 ...

  6. RabbmitMQ-工作队列及相关概念

    工作队列-WorkQueue 实现功能: 将耗时的任务分发给多个工作者 设计思想: 避免直接去做一件资源密集型的任务,并且还得等它完成.因此将任务安排后再去做.将任务封装为一个消息,发到队列中.一个工 ...

  7. Python从菜鸟到高手(1):初识Python

    1 Python简介 1.1 什么是Python   Python是一种面向对象的解释型计算机程序设计语言,由荷兰人吉多·范罗苏姆(Guido van Rossum)于1989年发明,第一个公开发行版 ...

  8. Python_初识函数和返回值_22

    #len s = '金老板小护士' len(s) def my_len(): #自定义函数 i = 0 for k in s: i += 1 print(i) length = my_len() pr ...

  9. 【个人项目总结】C#四则运算表达式生成程序

    S1&2.个人项目时间估算 PSP表格如下: PSP2.1 Personal Software Process Stages Time(Before) Time(After) Planning ...

  10. 【Beta版本发布】爬虫队长装备全面更新!

    一.Beta阶段目标回顾 1.为了解决Alpha阶段线程异常泛滥的问题,我们需要一个线程池. 2.为了爬取得到的文件正确可用,我们需要一个异常清理器. 3.为了不间断爬取,管理员不必频繁运行程序点,我 ...