BZOJ2159 Crash的文明世界(树形dp+斯特林数)
根据组合意义,有nk=ΣC(n,i)*i!*S(k,i) (i=0~k),即将k个有标号球放进n个有标号盒子的方案数=在n个盒子中选i个将k个有标号球放入并且每个盒子至少有一个球。
回到本题,可以令f[i][j]表示ΣC(dis(i,k),j) (k为i子树中节点),通过C(i,j)=C(i-1,j)+C(i-1,j-1)转移。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 50010
#define K 155
#define P 10007
int n,m,l,now,A,B,Q,tmp,p[N],t=;
int f[N][K],S[K][K],fac[K],ans[N];
struct data{int to,nxt;
}edge[N<<];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs(int k,int from)
{
f[k][]=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from)
{
dfs(edge[i].to,k);
f[k][]=(f[k][]+f[edge[i].to][])%P;
for (int j=;j<=m;j++)
f[k][j]=(f[k][j]+f[edge[i].to][j]+f[edge[i].to][j-])%P;
}
}
void getans(int k,int from)
{
for (int j=;j<=m;j++)
ans[k]=(ans[k]+f[k][j]*fac[j]%P*S[m][j])%P;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from)
{
for (int j=m;j>=;j--)
f[edge[i].to][j]=((f[k][j]-f[edge[i].to][j-]+f[k][j-]-f[edge[i].to][j-]-f[edge[i].to][j-])%P+P)%P;
f[edge[i].to][]=((f[k][]-f[edge[i].to][]+f[k][]-f[edge[i].to][])%P+P)%P;
f[edge[i].to][]=n;
getans(edge[i].to,k);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2159.in","r",stdin);
freopen("bzoj2159.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),l=read(),now=read(),A=read(),B=read(),Q=read();
for (int i=;i<n;i++)
{
now=(now*A+B)%Q;
tmp=(i<l)?i:l;
int x=i-now%tmp,y=i+;
addedge(x,y),addedge(y,x);
}
dfs(,);
fac[]=;for (int i=;i<=m;i++) fac[i]=fac[i-]*i%P;
S[][]=;
for (int i=;i<=m;i++)
for (int j=;j<=i;j++)
S[i][j]=(S[i-][j-]+S[i-][j]*j)%P;
getans(,);
for (int i=;i<=n;i++) printf("%d\n",ans[i]);
return ;
}
BZOJ2159 Crash的文明世界(树形dp+斯特林数)的更多相关文章
- [国家集训队] Crash 的文明世界(第二类斯特林数)
题目 [国家集训队] Crash 的文明世界 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 \[\begin{aligned} ans_x&=\sum\limi ...
- BZOJ2159 Crash的文明世界——树上DP&&第二类Stirling数
题意 给定一个有 $n$ 个结点的树,设 $S(i)$ 为第 $i$ 个结点的“指标值”,定义为 $S(i)=\sum_{i=1}^{n}dist(i,j)^k$,$dist(i, j)$ 为结点 $ ...
- BZOJ 2159: Crash 的文明世界 第二类斯特林数+树形dp
这个题非常巧妙啊~ #include <bits/stdc++.h> #define M 170 #define N 50003 #define mod 10007 #define LL ...
- [BZOJ2159]Crash的文明世界(斯特林数+树形DP)
题意:给定一棵树,求$S(i)=\sum_{j=1}^{n}dist(i,j)^k$.题解:根据斯特林数反演得到:$n^m=\sum_{i=0}^{n}C(n,i)\times i!\times S( ...
- BZOJ2159 : Crash 的文明世界
$x^k=\sum_{i=1}^k Stirling2(k,i)\times i!\times C(x,i)$ 设$f[i][j]=\sum_{k=1}^n C(dist(i,k),j)$. 则可以利 ...
- 题解 [BZOJ2159] Crash的文明世界
题面 解析 这题一眼换根DP啊 首先,我们考虑一下如何转换\(n^m\)这个式子, 先把式子摆出来吧:\(n^m=\sum_{j=0}^mS(m,j)C_n^jj!\) 其中\(S(m,j)\)表示第 ...
- BZOJ2159 Crash 的文明世界 【第二类斯特林数 + 树形dp】
题目链接 BZOJ2159 题解 显然不能直接做点分之类的,观察式子中存在式子\(n^k\) 可以考虑到 \[n^k = \sum\limits_{i = 0} \begin{Bmatrix} k \ ...
- BZOJ2159 Crash的文明世界
Description 传送门 给你一个n个点的树,边权为1. 对于每个点u, 求:\(\sum_{i = 1}^{n} distance(u, i)^{k}\) $ n \leq 50000, k ...
- 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)
[BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...
随机推荐
- Qt 中一些常用类中文说明
Qt 中一些常用类中文说明是本文讲述的内容,这篇文章主要是介绍Qt 当中经常使用的类,采取的是使用字母索引的方式,下面的类是被经常使用的. QDataStream 为QIODevice提供了一串的二进 ...
- [TPYBoard - Micropython之会python就能做硬件 开篇]会python就能做硬件!
转载请注明:@小五义http://www.cnblogs.com/xiaowuyiQQ群:64770604 会python就能做硬件! 在写这套教程之前,首先感觉山东萝卜电子科技有限公司(turnip ...
- kubernetes 里面pod时间修改
yaml文件中设置时区同步,只需要映射主机的“/etc/localtime”文件. apiVersion: extensions/v1beta1kind: Deploymentmetadata: na ...
- java 之UDP编程
大白话:每一台电脑都有自己的ip地址,向指定的ip地址发数据,数据就发送到了指定的电脑.UDP通信只是一种通信方式而已,其特点就不多说.有了ip地址数据就能发送到指定的电脑了,但是呢!我把数据发送到电 ...
- ajax返回json时,js获取类型,是字符串类型
ajax向php服务端请求,并返回json串给前端. js发现得到的返回值的类型是字符串,不能直接取json对象属性,需要JSON.parse(). 怎么解决呢? 这需要在php返回json时,加上一 ...
- 【小程序】模拟数据支持(mockjs配置模拟服务器接口数据)
utils目录 ①下载mockjs(地址)放置utils目录中 ②新建api.js :配置模拟数据以及后台接口,通过DEBUG=ture; //切换数据接口 配置如下: let API_HOST = ...
- Luogu3175 HAOI2015 按位或 min-max容斥、高维前缀和、期望
传送门 套路题 看到\(n \leq 20\),又看到我们求的是最后出现的位置出现的时间的期望,也就是集合中最大值的期望,考虑min-max容斥. 由\(E(max(S)) = \sum\limits ...
- BZOJ1816 CQOI2010 扑克牌 贪心
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1816 题意:有$N$堆牌,第$i$堆牌有$c_i$张牌,还有$M$张$joker$,每 ...
- [转]zookeeper-端口说明
一.zookeeper有三个端口(可以修改) 1.2181 2.3888 3.2888 二.3个端口的作用 1.2181:对cline端提供服务 2.3888:选举leader使用 3.2888:集群 ...
- 【JVM.1】java内存区域与内存溢出
鲁迅曾说过:Java与C++之间有一堵由内存动态分配和垃圾收集技术所围成的“高墙”,墙外面的人想进来,墙里面的人想出去. 一.虚拟机内存分布 Java虚拟机在执行Java程序的过程中会把它所管理的内存 ...