二维凸包 Graham扫描算法
题目链接:
http://poj.org/problem?id=1113
求下列点的凸包
求得凸包如下:
Graham扫描算法:
找出最左下的点,设为一号点,将其它点对一号点连线,按照与x轴的夹角大小排序:
让点1,2入栈,从第三个点开始循环
步骤1:判断该点是否在栈顶第二个点和栈顶的点的连线的左边,
2.如果在左边,将该点入栈,继续循环,
3.如果不在,弹出栈顶点,重复步骤1,
3在1,2连线左边,3入栈
4在2,3连线左边,4入栈
5不在3,4连线左边,4出栈,5在2,3连线左边,5入栈
6在3,5连线左边,6入栈
7不在5,6连线左边,6出栈,7在3,5连线左边,7入栈
遍历完成后,将栈顶与1连起来就完成了
代码
//#include<bits/stdc++.h>
#include<iostream>
#include<cmath>
#include<algorithm>
#define fi first
#define se second
#define INF 0x3f3f3f3f
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
#define pqueue priority_queue
#define NEW(a,b) memset(a,b,sizeof(a))
#define lowbit(x) ((x)&(-x))
using namespace std;
const double pi=4.0*atan(1.0);
const double e=exp(1.0);
const int maxn=4e4+;
typedef long long LL;
typedef unsigned long long ULL;
const LL mod=1e9+;
const ULL base=1e7+;
struct Point{
int x,y;
bool operator<(Point &u){//坐标排序
if(x!=u.x) return x<u.x;
return y<u.y;
}
};
Point vex[maxn],Stack[maxn],Basis;
short checkL(Point p,Point q,Point s){//判断点s是否在直线pq的左侧
int area2=p.x*q.y-p.y*q.x+q.x*s.y-q.y*s.x+s.x*p.y-s.y*p.x;
if(area2>) return ;//表示在左侧
if(area2==) return ;//表示在同一条线上;
return -;//表示在右侧
}
double dis(Point u,Point v){//计算uv的距离
return sqrt((u.x-v.x)*(u.x-v.x)*1.0+(u.y-v.y)*(u.y-v.y));
}
bool cmp(Point a,Point b){//极角排序
short m=checkL(Basis,a,b);
if(m==) return ;//b在基点与a的连线的左侧,说明b的极角大于a
if(m==&&dis(Basis,a)<=dis(Basis,b))//极角相同时,靠近基点的排在前
return ;
return ;
}
int main(){
cin.tie();
cout.tie();
int n,l;
cin>>n>>l;
for(int i=;i<n;i++){
cin>>vex[i].x>>vex[i].y;
}
sort(vex,vex+n);
Basis=vex[];//选第一个点为基点
sort(vex+,vex+n,cmp);
int top=;
Stack[top]=vex[];
Stack[++top]=vex[];
for(int i=;i<n;i++){
while(top>=&&checkL(Stack[top-],Stack[top],vex[i])<){
top--;
}
Stack[++top]=vex[i];
}
double sum=0.0;
for(int i=;i<top;i++){
sum+=dis(Stack[i],Stack[i+]);
}
sum+=dis(Stack[top],Stack[]);
sum+=2.0*pi*l;
LL ans=(LL)sum;
if(sum-(double)ans>=0.5){
ans++;
}
cout<<ans<<endl;
system("pause");
return ;
}
二维凸包 Graham扫描算法的更多相关文章
- 【计算几何】二维凸包——Graham's Scan法
凸包 点集Q的凸包(convex hull)是指一个最小凸多边形,满足Q中的点或者在多边形边上或者在其内.右图中由红色线段表示的多边形就是点集Q={p0,p1,...p12}的凸包. 一组平面上的点, ...
- 计算几何 二维凸包问题 Andrew算法
凸包:把给定点包围在内部的.面积最小的凸多边形. Andrew算法是Graham算法的变种,速度更快稳定性也更好. 首先把全部点排序.依照第一keywordx第二keywordy从小到大排序,删除反复 ...
- Andrew算法求二维凸包-学习笔记
凸包的概念 首先,引入凸包的概念: (有点窄的时候...图片右边可能会被吞,拉开图片看就可以了) 大概长这个样子: 那么,给定一些散点,如何快速地求出凸包呢(用在凸包上的点来表示凸包) Andrew算 ...
- 使用Graham扫描法求二维凸包的一个程序
#include <iostream> #include <cstring> #include <cstdlib> #include <cmath> # ...
- POJ 2187 旋转卡壳 + 水平序 Graham 扫描算法 + 运算符重载
水平序 Graham 扫描算法: 计算二维凸包的时候可以用到,Graham 扫描算法有水平序和极角序两种. 极角序算法能一次确定整个凸包, 但是计算极角需要用到三角函数,速度较慢,精度较差,特殊情况较 ...
- Luogu P2742 模板-二维凸包
Luogu P2742 模板-二维凸包 之前写的实在是太蠢了.于是重新写了一个. 用 \(Graham\) 算法求凸包. 注意两个向量 \(a\times b>0\) 的意义是 \(b\) 在 ...
- android 二维码生成+扫描
android 二维码生成+扫描 1.在Android应用当中,很多时候都要用到二维码扫描,来避免让用户手动输入的麻烦. Google官方自己推出了一个二维码开源项目:ZXing库. 2.这里简单介绍 ...
- UVA 10652 Board Wrapping(二维凸包)
传送门 刘汝佳<算法竞赛入门经典>P272例题6包装木板 题意:有n块矩形木板,你的任务是用一个面积尽量小的凸多边形把它们抱起来,并计算出木板占整个包装面积的百分比. 输入:t组数据,每组 ...
- ios中二维码的使用之二: 二维码的扫描
二维码的扫描: 1,导入支持框架,<AVFoundation/AVFoundation.h> 2 ,扫描:
随机推荐
- configparse模块和hashlib模块
# import configparser # # config = configparser.ConfigParser() #config = {} # config['DEFAULT'] = {' ...
- 在html中做表格以及给表格设置高宽字体居中和表格线的粗细
今天学习了如何用HTML在网页上做表格,对于我这种横列部分的属实有点麻烦,不过在看着表格合并单过格的时候我把整个表格看做代码就容易多了. 对于今天的作业让我学习了更多的代码,对于代码的应用希望更加熟练 ...
- 如何在Python中使用ZeroMQ和Docker构建微服务架构
@Container容器技术大会将于6月4日在上海光大会展中心国际大酒店举办,来自携程.PPTV.蚂蚁金服.京东.浙江移动.海尔电器.唯品会.eBay.道富银行.麻袋理财等公司的技术负责人将带来实践经 ...
- windows server 修改远程桌面连接端口号
1. [运行]输入 regedit 2. 在注册表编辑器中找到以下PortNamber键,改为要使用的远程端口,如10000. HKEY_LOCAL_MACHINE\SYSTEM\CurrentCo ...
- MySQL 中,字符串 0 和数字 0 的区别
我的理解: 用户输入值后,MySQL 根据该字段的数据类型,来转换值.
- Spring生态研习【二】:SpEL(Spring Expression Language)
1. SpEL功能简介 它是spring生态里面的一个功能强大的描述语言,支在在运行期间对象图里面的数据查询和数据操作.语法和标准的EL一样,但是支持一些额外的功能特性,最显著的就是方法调用以及基本字 ...
- python2的reload模块
在刚开始写python程序的时候,都会遇到一个很头疼的问题——编码错误,在之前的文章中也做了介绍: 由__future__中unicode_literals引起的错误来研究python中的编码问题 . ...
- 廖雪峰Java6 IO编程-2input和output-6classpath资源
1.从classpath读取文件可以避免不同环境下文件路径不一致的问题. Windows和Linux关于路径的表示不一致 Windows:C:\conf\default.properties Linu ...
- 如何查看k8s存在etcd中的数据(转)
原文 https://yq.aliyun.com/articles/561888 一直有这个冲动, 想知道kubernetes往etcd里放了哪些数据,是如何组织的. 能看到,才有把握知道它的实现和细 ...
- Power Designer 转C#实体类方法
1.打开Power Designer菜单 Tools,选择如图 2.弹出方框中选择PD安装目录下的如图地址 3.object language选择正确目录后,可选如图语言,如C#.再填写name ...