Why is 'x' in ('x',) faster than 'x' == 'x'?
Question:
>>> timeit.timeit("'x' in ('x',)")
0.04869917374131205
>>> timeit.timeit("'x' == 'x'")
0.06144205736110564
Also works for multiple options, both seem to grow linearly:
>>> timeit.timeit("'x' in ('x', 'y')")
0.04866674801541748
>>> timeit.timeit("'x' == 'x' or 'x' == 'y'")
0.06565782838087131
>>> timeit.timeit("'x' in ('y', 'x')")
0.08975995576448526
>>> timeit.timeit("'x' == 'y' or 'x' == 'y'")
0.12992391047427532
Based on this, I think I should start using in
everywhere
instead of ==
!!
Answer:
As I mentioned to David Wolever, there's more to this than meets the eye; both methods dispatch to is
;
you can prove this by doing
min(Timer("x == x", setup="x = 'a' * 1000000").repeat(10, 10000))
#>>> 0.00045456900261342525
min(Timer("x == y", setup="x = 'a' * 1000000; y = 'a' * 1000000").repeat(10, 10000))
#>>> 0.5256857610074803
The first can only be so fast because it checks by identity.
To find out why one would take longer than the other, let's trace through execution.
They both start in ceval.c
,
from COMPARE_OP
since
that is the bytecode involved
TARGET(COMPARE_OP) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = cmp_outcome(oparg, left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
PREDICT(POP_JUMP_IF_FALSE);
PREDICT(POP_JUMP_IF_TRUE);
DISPATCH();
}
This pops the values from the stack (technically it only pops one)
PyObject *right = POP();
PyObject *left = TOP();
and runs the compare:
PyObject *res = cmp_outcome(oparg, left, right);
cmp_outcome
is
this:
static PyObject *
cmp_outcome(int op, PyObject *v, PyObject *w)
{
int res = 0;
switch (op) {
case PyCmp_IS: ...
case PyCmp_IS_NOT: ...
case PyCmp_IN:
res = PySequence_Contains(w, v);
if (res < 0)
return NULL;
break;
case PyCmp_NOT_IN: ...
case PyCmp_EXC_MATCH: ...
default:
return PyObject_RichCompare(v, w, op);
}
v = res ? Py_True : Py_False;
Py_INCREF(v);
return v;
}
This is where the paths split. The PyCmp_IN
branch
does
int
PySequence_Contains(PyObject *seq, PyObject *ob)
{
Py_ssize_t result;
PySequenceMethods *sqm = seq->ob_type->tp_as_sequence;
if (sqm != NULL && sqm->sq_contains != NULL)
return (*sqm->sq_contains)(seq, ob);
result = _PySequence_IterSearch(seq, ob, PY_ITERSEARCH_CONTAINS);
return Py_SAFE_DOWNCAST(result, Py_ssize_t, int);
}
Note that a tuple is defined as
static PySequenceMethods tuple_as_sequence = {
...
(objobjproc)tuplecontains, /* sq_contains */
};
PyTypeObject PyTuple_Type = {
...
&tuple_as_sequence, /* tp_as_sequence */
...
};
So the branch
if (sqm != NULL && sqm->sq_contains != NULL)
will be taken and *sqm->sq_contains
,
which is the function (objobjproc)tuplecontains
,
will be taken.
This does
static int
tuplecontains(PyTupleObject *a, PyObject *el)
{
Py_ssize_t i;
int cmp;
for (i = 0, cmp = 0 ; cmp == 0 && i < Py_SIZE(a); ++i)
cmp = PyObject_RichCompareBool(el, PyTuple_GET_ITEM(a, i),
Py_EQ);
return cmp;
}
...Wait, wasn't that PyObject_RichCompareBool
what
the other branch took? Nope, that was PyObject_RichCompare
.
That code path was short so it likely just comes down to the speed of these two. Let's compare.
int
PyObject_RichCompareBool(PyObject *v, PyObject *w, int op)
{
PyObject *res;
int ok;
/* Quick result when objects are the same.
Guarantees that identity implies equality. */
if (v == w) {
if (op == Py_EQ)
return 1;
else if (op == Py_NE)
return 0;
}
...
}
The code path in PyObject_RichCompareBool
pretty
much immediately terminates. For PyObject_RichCompare
,
it does
PyObject *
PyObject_RichCompare(PyObject *v, PyObject *w, int op)
{
PyObject *res;
assert(Py_LT <= op && op <= Py_GE);
if (v == NULL || w == NULL) { ... }
if (Py_EnterRecursiveCall(" in comparison"))
return NULL;
res = do_richcompare(v, w, op);
Py_LeaveRecursiveCall();
return res;
}
The Py_EnterRecursiveCall
/Py_LeaveRecursiveCall
combo
are not taken in the previous path, but these are relatively quick macros that'll short-circuit after incrementing and decrementing some globals.
do_richcompare
does:
static PyObject *
do_richcompare(PyObject *v, PyObject *w, int op)
{
richcmpfunc f;
PyObject *res;
int checked_reverse_op = 0;
if (v->ob_type != w->ob_type && ...) { ... }
if ((f = v->ob_type->tp_richcompare) != NULL) {
res = (*f)(v, w, op);
if (res != Py_NotImplemented)
return res;
...
}
...
}
This does some quick checks to call v->ob_type->tp_richcompare
which
is
PyTypeObject PyUnicode_Type = {
...
PyUnicode_RichCompare, /* tp_richcompare */
...
};
which does
PyObject *
PyUnicode_RichCompare(PyObject *left, PyObject *right, int op)
{
int result;
PyObject *v;
if (!PyUnicode_Check(left) || !PyUnicode_Check(right))
Py_RETURN_NOTIMPLEMENTED;
if (PyUnicode_READY(left) == -1 ||
PyUnicode_READY(right) == -1)
return NULL;
if (left == right) {
switch (op) {
case Py_EQ:
case Py_LE:
case Py_GE:
/* a string is equal to itself */
v = Py_True;
break;
case Py_NE:
case Py_LT:
case Py_GT:
v = Py_False;
break;
default:
...
}
}
else if (...) { ... }
else { ...}
Py_INCREF(v);
return v;
}
Namely, this shortcuts on left
... but only after doing
== right
if (!PyUnicode_Check(left) || !PyUnicode_Check(right))
if (PyUnicode_READY(left) == -1 ||
PyUnicode_READY(right) == -1)
All in all the paths then look something like this (manually recursively inlining, unrolling and pruning known branches)
POP() # Stack stuff
TOP() #
#
case PyCmp_IN: # Dispatch on operation
#
sqm != NULL # Dispatch to builtin op
sqm->sq_contains != NULL #
*sqm->sq_contains #
#
cmp == 0 # Do comparison in loop
i < Py_SIZE(a) #
v == w #
op == Py_EQ #
++i #
cmp == 0 #
#
res < 0 # Convert to Python-space
res ? Py_True : Py_False #
Py_INCREF(v) #
#
Py_DECREF(left) # Stack stuff
Py_DECREF(right) #
SET_TOP(res) #
res == NULL #
DISPATCH() #
vs
POP() # Stack stuff
TOP() #
#
default: # Dispatch on operation
#
Py_LT <= op # Checking operation
op <= Py_GE #
v == NULL #
w == NULL #
Py_EnterRecursiveCall(...) # Recursive check
#
v->ob_type != w->ob_type # More operation checks
f = v->ob_type->tp_richcompare # Dispatch to builtin op
f != NULL #
#
!PyUnicode_Check(left) # ...More checks
!PyUnicode_Check(right)) #
PyUnicode_READY(left) == -1 #
PyUnicode_READY(right) == -1 #
left == right # Finally, doing comparison
case Py_EQ: # Immediately short circuit
Py_INCREF(v); #
#
res != Py_NotImplemented #
#
Py_LeaveRecursiveCall() # Recursive check
#
Py_DECREF(left) # Stack stuff
Py_DECREF(right) #
SET_TOP(res) #
res == NULL #
DISPATCH() #
Now, PyUnicode_Check
and PyUnicode_READY
are
pretty cheap since they only check a couple of fields, but it should be obvious that the top one is a smaller code path, it has fewer function calls, only one switch statement and is just a bit thinner.
TL;DR:
Both dispatch to if
; the difference is just how much work they do to get there.
(left_pointer == right_pointer)in
just
does less.
Why is 'x' in ('x',) faster than 'x' == 'x'?的更多相关文章
- faster r-cnn 在CPU配置下训练自己的数据
因为没有GPU,所以在CPU下训练自己的数据,中间遇到了各种各样的坑,还好没有放弃,特以此文记录此过程. 1.在CPU下配置faster r-cnn,参考博客:http://blog.csdn.net ...
- r-cnn学习系列(三):从r-cnn到faster r-cnn
把r-cnn系列总结下,让整个流程更清晰. 整个系列是从r-cnn至spp-net到fast r-cnn再到faster r-cnn. RCNN 输入图像,使用selective search来构造 ...
- faster with MyISAM tables than with InnoDB or NDB tables
http://dev.mysql.com/doc/refman/5.7/en/partitioning-limitations.html Performance considerations. So ...
- situations where MyISAM will be faster than InnoDB
http://www.tocker.ca/categories/myisam Converting MyISAM to InnoDB and a lesson on variance I'm abou ...
- Faster RNNLM (HS/NCE) toolkit
https://github.com/kjw0612/awesome-rnn Faster Recurrent Neural Network Language Modeling Toolkit wit ...
- Faster R-CNN CPU环境搭建
操作系统: bigtop@bigtop-SdcOS-Hypervisor:~/py-faster-rcnn/tools$ cat /etc/issue Ubuntu LTS \n \l Python版 ...
- Why is processing a sorted array faster than an unsorted array?
这是我在逛 Stack Overflow 时遇见的一个高分问题:Why is processing a sorted array faster than an unsorted array?,我觉得这 ...
- Introducing the Accelerated Mobile Pages Project, for a faster, open mobile web
https://googleblog.blogspot.com/2015/10/introducing-accelerated-mobile-pages.html October 7, 2015 Sm ...
- 论文阅读之:Is Faster R-CNN Doing Well for Pedestrian Detection?
Is Faster R-CNN Doing Well for Pedestrian Detection? ECCV 2016 Liliang Zhang & Kaiming He 原文链接 ...
- 如何才能将Faster R-CNN训练起来?
如何才能将Faster R-CNN训练起来? 首先进入 Faster RCNN 的官网啦,即:https://github.com/rbgirshick/py-faster-rcnn#installa ...
随机推荐
- android 动画学习
android动画基础简介及使用方法:http://www.cnblogs.com/ldq2016/p/5407061.html
- C/C++ 的宏中#和##的作用和展开
C/C++ 的宏中: (1) # 的功能是将其后面的宏参数进行字符串化操作,简单说就是在对它所引用的宏变量通过替换后在其左右各加上一个双引号. 也就是说: #define __TO_STRING_IM ...
- DE1-SOC资源
1,digital solution lab 网站上的de1soc QT教程. 内容包括: Install Qt 5.4 Designer Install the Altera SoC Tool-Ch ...
- Linux 线程编程2.0——线程同步-互斥锁
当我们需要控制对共享资源的存取的时候,可以用一种简单的加锁的方法来控制.我们可以创建一个读/写程序,它们共用一个共享缓冲区,使用互斥锁来控制对缓冲区的存取. 函数 pthread_mutex_init ...
- 736. Parse Lisp Expression
You are given a string expression representing a Lisp-like expression to return the integer value of ...
- 设计模式总结(Java)—— 单例模式
1. 定义 为了确保一个类有且仅有一个实例,而且自行实例化并向整个系统提供这个实例. 2. 使用场景 确保某个类有且只有一个对象的场景,避免产生多个对象消耗过多的资源,或者某种类型的对象只应该有且只有 ...
- HTML中META标签的使用
一.META标签简介 <meta> 元素可提供有关页面的元信息,元数据总是以名称/值的形式被成对传递的. <meta> 标签位于文档的头部,不包含任何内容. <meta& ...
- MySql数据保障
1, 安装文档 配置文件,目录,参数,用户,权限,程序,安装方式 2, 数据备份 强大的备份策略,
- process(进程)
进程 指的是执行中程序的一个实例(instance). 新进程由fork() 与 execve() 等系统调用起始,然后执行,直到下达exit()系统调用为止. 操作系统内核里,称为调度器(sched ...
- [译]ElasticSearch vs. Solr
在Gen2产品的早期阶段, 我们事实上是失败的, 这促使我们重新审视我们现有的技术栈. 我们仔细分析系统中的每个独立的组件,并记录下来, 当然其中也包括构成我们核心功能的搜索引擎技术. 在我们的通用日 ...