pandas 是python中很重要的组件,网上关于pandas 的文章也很多,比如Python科学计算之Pandas 和 Python数据分析入门

Pandas基于两种数据类型:series与dataframe。

一个series是一个一维的数据类型,其中每一个元素都有一个标签。如果你阅读过这个系列的关于Numpy的文章,你就可以发现series类似于Numpy中元素带标签的数组。其中,标签可以是数字或者字符串。

一个dataframe是一个二维的表结构。Pandas的dataframe可以存储许多种不同的数据类型,并且每一个坐标轴都有自己的标签。你可以把它想象成一个series的字典项。

这里我使用的数据源如下:"https://raw.githubusercontent.com/alstat/Analysis-with-Programming/master/2014/Python/Numerical-Descriptions-of-the-Data/data.csv"

经常使用的效果如图:

要使用pandas首先我们需要 安装并引入import pandas as pd,read_csv方法可以加载本地文件也可以读取网络文件,head()方法默认加载前面5条记录,也可以指定记录条数,比如head(10)就是前面10条记录,tail()取后面多少条记录, 也可以指定记录条数。columns显示的表格的列名,index这里可以理解为表格的下标,默认是从0开始的,可以用len(df)来获取记录数 ,df.T可以理解为表格的行列转换。

head和tail是表格前面或者后面多少条记录, 也可以用loc方法指定第几条记录,比如我这里就强制指定第一和第三条及记录,当然也可以限制值显示指定的列,drop方法是丢弃的意思,axis 参数告诉函数到底舍弃列还是行。如果axis等于0,那么就舍弃行,这里丢弃的是第2、3列的数据,describe属性对数据的统计特性进行描述,

Python有一个很好的统计推断包。那就是scipy里面的stats。ttest_1samp实现了单样本t检验。因此,如果我们想检验数据Abra列的稻谷产量均值,通过零假设,这里我们假定总体稻谷产量均值为15000

第一个数组是t统计量,第二个数组则是相应的p值。返回下述值组成的元祖:

t : 浮点或数组类型 ,t 统计量
prob : 浮点或数组类型, two-tailed p-value 双侧概率值
通过上面的输出,看到p值是0.267远大于α等于0.05,因此没有充分的证据说平均稻谷产量不是150000。将这个检验应用到所有的变量,同样假设均值为15000

表格的列还可以当做属性来获取, 比如df["Abra"]和df.Abra都是有效的,并且列也支持过滤和排序,如下的df[df.Abra>5000]

注意到列名虽然只有一个元素,却实际上需要包含于一个列表中。如果你想要多个索引,你可以简单地在列表中增加另一个列名.我们可以在Pandas中通过调用sort_index来对dataframe实现排序

Python中有许多可视化模块,最流行的当属matpalotlib库。稍加提及,我们也可选择bokeh和seaborn模块.

Python的pandas的更多相关文章

  1. Python利用pandas处理Excel数据的应用

    Python利用pandas处理Excel数据的应用   最近迷上了高效处理数据的pandas,其实这个是用来做数据分析的,如果你是做大数据分析和测试的,那么这个是非常的有用的!!但是其实我们平时在做 ...

  2. Python数据分析--Pandas知识点(三)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) Python数据分析--Pandas知识点(二) 下面将是在知识点一, ...

  3. 基于 Python 和 Pandas 的数据分析(4) --- 建立数据集

    这一节我想对使用 Python 和 Pandas 的数据分析做一些扩展. 假设我们是亿万富翁, 我们会想要多元化地进行投资, 比如股票, 分红, 金融市场等, 那么现在我们要聚焦房地产市场, 做一些这 ...

  4. 基于 Python 和 Pandas 的数据分析(2) --- Pandas 基础

    在这个用 Python 和 Pandas 实现数据分析的教程中, 我们将明确一些 Pandas 基础知识. 加载到 Pandas Dataframe 的数据形式可以很多, 但是通常需要能形成行和列的数 ...

  5. 基于 Python 和 Pandas 的数据分析(1)

    基于 Python 和 Pandas 的数据分析(1) Pandas 是 Python 的一个模块(module), 我们将用 Python 完成接下来的数据分析的学习. Pandas 模块是一个高性 ...

  6. python安装pandas和lxml

    一.安装python 二.安装pip 三.安装mysql-connector(window版):下载mysql-connector-python-2.1.3,解压后进入目录,命令安装:pip inst ...

  7. python之pandas用法大全

    python之pandas用法大全 更新时间:2018年03月13日 15:02:28 投稿:wdc 我要评论 本文讲解了python的pandas基本用法,大家可以参考下 一.生成数据表1.首先导入 ...

  8. python之pandas简单介绍及使用(一)

    python之pandas简单介绍及使用(一) 一. Pandas简介1.Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据 ...

  9. Python数据分析--Pandas知识点(二)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) 下面将是在知识点一的基础上继续总结. 13. 简单计算 新建一个数据表 ...

  10. Python之Pandas中Series、DataFrame

    Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...

随机推荐

  1. python--模拟蜂窝网(https)登陆总结

    #用户名密码登陆 1.寻找登陆请求(此处可以故意输错用户名密码,目的是为了能够看清楚重定向的地址) 发现: 点击登陆时,请求了 ①.post302:https://passport.mafengwo. ...

  2. 修改注册表.exe的文件目录

    文件打开方式不能选择默认打开文件 cmd >regedit 以sublime_text为例 HKEY_CLASSES_ROOT/Applications/sublime_text.exe/she ...

  3. 2018牛客网暑假ACM多校训练赛(第二场)E tree 动态规划

    原文链接https://www.cnblogs.com/zhouzhendong/p/NowCoder-2018-Summer-Round2-E.html 题目传送门 - 2018牛客多校赛第二场 E ...

  4. 用greenlet实现协程消费者生产者

    代码: from greenlet import greenlet import random def pro(): 生产者 while True: item = random.randint(0,9 ...

  5. Flume的四个使用案例

    一.Flume监听端口 1,在linux机器上下载telnet工具 yum search telnet yumm install telnet.x86_64 2.编写flume的配置文件,并将文件复制 ...

  6. Java 之 JQuery

    1.JQuery a.定义:jQuery 是一个 JavaScript 库 b.作用:极大地简化了 JavaScript 编程 c.引入: <script src="jquery.js ...

  7. Oracle FM FM09999999 确保8位数字 即使全是0

    Select TO_CHAR(12.123,'0999.999'),TO_CHAR(123,'FM09999999') FROM DUAL; TO_CHAR(12.123,'0999.999') TO ...

  8. eslint那些事儿

    eslint是一个插件化的javascript和jsx代码检测工具,eslint使用Node.js编写.全局安装的eslint只能使用全局安装的插件,本地安装的eslint不仅可以使用本地安装的插件还 ...

  9. maven 构建spring boot + mysql 的基础项目

    一.maven 依赖 <parent> <groupId>org.springframework.boot</groupId> <artifactId> ...

  10. C++多态实现原理详解

    C++的多态性用一句话概括就是:在基类的函数前加上virtual关键字,在派生类中重写该函数,运行时将会根据对象的实际类型来调用相应的函数.如果对象类型是派生类,就调用派生类的函数:如果对象类型是基类 ...