Python的pandas
pandas 是python中很重要的组件,网上关于pandas 的文章也很多,比如Python科学计算之Pandas 和 Python数据分析入门
Pandas基于两种数据类型:series与dataframe。
一个series是一个一维的数据类型,其中每一个元素都有一个标签。如果你阅读过这个系列的关于Numpy的文章,你就可以发现series类似于Numpy中元素带标签的数组。其中,标签可以是数字或者字符串。
一个dataframe是一个二维的表结构。Pandas的dataframe可以存储许多种不同的数据类型,并且每一个坐标轴都有自己的标签。你可以把它想象成一个series的字典项。
这里我使用的数据源如下:"https://raw.githubusercontent.com/alstat/Analysis-with-Programming/master/2014/Python/Numerical-Descriptions-of-the-Data/data.csv"
经常使用的效果如图:
要使用pandas首先我们需要 安装并引入import pandas as pd,read_csv方法可以加载本地文件也可以读取网络文件,head()方法默认加载前面5条记录,也可以指定记录条数,比如head(10)就是前面10条记录,tail()取后面多少条记录, 也可以指定记录条数。columns显示的表格的列名,index这里可以理解为表格的下标,默认是从0开始的,可以用len(df)来获取记录数 ,df.T可以理解为表格的行列转换。
head和tail是表格前面或者后面多少条记录, 也可以用loc方法指定第几条记录,比如我这里就强制指定第一和第三条及记录,当然也可以限制值显示指定的列,drop方法是丢弃的意思,axis 参数告诉函数到底舍弃列还是行。如果axis等于0,那么就舍弃行,这里丢弃的是第2、3列的数据,describe属性对数据的统计特性进行描述,
Python有一个很好的统计推断包。那就是scipy里面的stats。ttest_1samp实现了单样本t检验。因此,如果我们想检验数据Abra列的稻谷产量均值,通过零假设,这里我们假定总体稻谷产量均值为15000
第一个数组是t统计量,第二个数组则是相应的p值。返回下述值组成的元祖:
t : 浮点或数组类型 ,t 统计量
prob : 浮点或数组类型, two-tailed p-value 双侧概率值
通过上面的输出,看到p值是0.267远大于α等于0.05,因此没有充分的证据说平均稻谷产量不是150000。将这个检验应用到所有的变量,同样假设均值为15000
表格的列还可以当做属性来获取, 比如df["Abra"]和df.Abra都是有效的,并且列也支持过滤和排序,如下的df[df.Abra>5000]
注意到列名虽然只有一个元素,却实际上需要包含于一个列表中。如果你想要多个索引,你可以简单地在列表中增加另一个列名.我们可以在Pandas中通过调用sort_index来对dataframe实现排序
Python中有许多可视化模块,最流行的当属matpalotlib库。稍加提及,我们也可选择bokeh和seaborn模块.
Python的pandas的更多相关文章
- Python利用pandas处理Excel数据的应用
Python利用pandas处理Excel数据的应用 最近迷上了高效处理数据的pandas,其实这个是用来做数据分析的,如果你是做大数据分析和测试的,那么这个是非常的有用的!!但是其实我们平时在做 ...
- Python数据分析--Pandas知识点(三)
本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) Python数据分析--Pandas知识点(二) 下面将是在知识点一, ...
- 基于 Python 和 Pandas 的数据分析(4) --- 建立数据集
这一节我想对使用 Python 和 Pandas 的数据分析做一些扩展. 假设我们是亿万富翁, 我们会想要多元化地进行投资, 比如股票, 分红, 金融市场等, 那么现在我们要聚焦房地产市场, 做一些这 ...
- 基于 Python 和 Pandas 的数据分析(2) --- Pandas 基础
在这个用 Python 和 Pandas 实现数据分析的教程中, 我们将明确一些 Pandas 基础知识. 加载到 Pandas Dataframe 的数据形式可以很多, 但是通常需要能形成行和列的数 ...
- 基于 Python 和 Pandas 的数据分析(1)
基于 Python 和 Pandas 的数据分析(1) Pandas 是 Python 的一个模块(module), 我们将用 Python 完成接下来的数据分析的学习. Pandas 模块是一个高性 ...
- python安装pandas和lxml
一.安装python 二.安装pip 三.安装mysql-connector(window版):下载mysql-connector-python-2.1.3,解压后进入目录,命令安装:pip inst ...
- python之pandas用法大全
python之pandas用法大全 更新时间:2018年03月13日 15:02:28 投稿:wdc 我要评论 本文讲解了python的pandas基本用法,大家可以参考下 一.生成数据表1.首先导入 ...
- python之pandas简单介绍及使用(一)
python之pandas简单介绍及使用(一) 一. Pandas简介1.Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据 ...
- Python数据分析--Pandas知识点(二)
本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) 下面将是在知识点一的基础上继续总结. 13. 简单计算 新建一个数据表 ...
- Python之Pandas中Series、DataFrame
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...
随机推荐
- 利用Flume将MySQL表数据准实时抽取到HDFS
转自:http://blog.csdn.net/wzy0623/article/details/73650053 一.为什么要用到Flume 在以前搭建HAWQ数据仓库实验环境时,我使用Sqoop抽取 ...
- React前端框架路由跳转,前端回车事件、禁止空格、提交方式等方法
react router - historyhistory.push() 方法用于在JS中实现页面跳转history.go(-1) 用来实现页面的前进(1)和后退(-1) 访问js连接后+?v1清缓存 ...
- 异常java.lang.IllegalArgumentException:attempt to create delete event with null entity
异常java.lang.IllegalArgumentException:attempt to create delete event with null entity解决:路径问题,前台jsp和ja ...
- Debian 9 中设置网络
一.对于有线网络,如果默认没有安装图形界面,进入了 multi-user.target中时,是没有使用NetworkManager管理网络的,此时需要手动配置才能上网 首先得到网卡名称:ip addr ...
- JavaEE 之 Spring Data JPA(二)
1.JPQL a.定义:Java持久化查询语言(JPQL)是一种可移植的查询语言,旨在以面向对象表达式语言的表达式,将SQL语法和简单查询语义绑定在一起·使用这种语言编写的查询是可移植的,可以被编译成 ...
- 【python】TCP/IP编程
No1: [TCP] 客户端 import socket s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) s.connect(('www.sina ...
- HDU 3415 Max Sum of Max-K-sub-sequence【单调队列】
<题目链接> 题目大意: 给你一段从1~N的圆形序列,要你求出这段圆形序列中长度不超过K的最大连续子序列之和是多少,并且输出这子序列的起点和终点. 解题分析: 既然是求连续子序列之和,我们 ...
- JS导出gridview到excel
<html> <head> <script type="text/javascript"> var tableToExcel = (functi ...
- cout endl in c++
#include<iostream> using namespace std; int main() { cout<<endl; endl(cout); getchar(); ...
- rest framework 源码流程
1. def dispatch(self, request, *args, **kwargs): """ `.dispatch()` is pretty much the ...