题意

题目链接

Sol

这个东西的学名应该叫“闵可夫斯基和”。就是合并两个凸包

首先我们先分别求出给出的两个多边形的凸包。合并的时候直接拿个双指针扫一下,每次选最凸的点就行了。

复杂度\(O(nlogn + n)\)

#include<bits/stdc++.h>
#define LL long long
//#define int long long
using namespace std;
const int MAXN = 1e6 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M;
struct Point {
LL x, y;
Point operator - (const Point &rhs) const {
return {x - rhs.x, y - rhs.y};
}
Point operator + (const Point &rhs) const {
return {x + rhs.x, y + rhs.y};
}
LL operator ^ (const Point &rhs) const {
return x * rhs.y - y * rhs.x;
}
bool operator < (const Point &rhs) const {
return x == rhs.x ? y < rhs.y : x < rhs.x;
}
bool operator == (const Point &rhs) const {
return x == rhs.x && y == rhs.y;
}
bool operator != (const Point &rhs) const {
return x != rhs.x || y != rhs.y;
}
};
vector<Point> v1, v2;
Point q[MAXN];
int top;
void insert(Point a) {
while(top > 1 && ((q[top] - q[top - 1]) ^ (a - q[top - 1])) < 0) top--;
q[++top] = a;
}
void GetConHull(vector<Point> &v) {
sort(v.begin(), v.end());
q[++top] = v[0];
for(int i = 1; i < v.size(); i++) if(v[i] != v[i - 1]) insert(v[i]);
for(int i = v.size() - 2; i >= 0; i--) if(v[i] != v[i + 1]) insert(v[i]);
v.clear();
for(int i = 1; i <= top; i++) v.push_back(q[i]); top = 0;
}
void Merge(vector<Point> &a, vector<Point> &b) {
vector<Point> c;
q[++top] = a[0] + b[0];
int i = 0, j = 0;
while(i + 1 < a.size() && j + 1< b.size()) {
Point n1 = (a[i] + b[j + 1]) - q[top], n2 = (a[i + 1] + b[j]) - q[top];
if((n1 ^ n2) < 0)
q[++top] = a[i + 1] + b[j], i++;
else
q[++top] = a[i] + b[j + 1], j++;
}
for(; i < a.size(); i++) q[++top] = a[i] + b[b.size() - 1];
for(; j < b.size(); j++) q[++top] = b[j] + a[a.size() - 1];
for(int i = 1; i <= top; i++) c.push_back(q[i]);
LL ans = 0;
//for(auto &g : c) printf("%d %d\n", g.x, g.y);
for(int i = 1; i < c.size() - 1; i++)
ans += (c[i] - c[0]) ^ (c[i + 1] - c[0]);
cout << ans;
}
signed main() {
N = read(); M = read();
for(int i = 1; i <= N; i++) {
int x = read(), y = read();
v1.push_back({x, y});
}
for(int i = 1; i <= M; i++) {
int x = read(), y = read();
v2.push_back({x, y});
}
GetConHull(v1);
GetConHull(v2);
Merge(v1, v2);
return 0;
}
/*
4 5
0 0 2 1 0 1 2 0
0 0 1 0 0 2 1 2 0 1
*/

BZOJ2564: 集合的面积(闵可夫斯基和 凸包)的更多相关文章

  1. bzoj2564: 集合的面积(闵可夫斯基和 凸包)

    题面 传送门 题解 花了一个下午的时间调出了一个稍微能看的板子--没办法网上的板子和咱的不太兼容-- 首先有一个叫做闵可夫斯基和的东西,就是给你两个点集\(A,B\),要你求一个点集\(C=\{x+y ...

  2. bzoj2564集合的面积

    题目描述 对于一个平面上点的集合P={(xi,yi )},定义集合P的面积F(P)为点集P的凸包的面积. 对于两个点集A和B,定义集合的和为: A+B={(xiA+xjB,yiA+yjB ):(xiA ...

  3. bzoj2564 集合的面积

    Description 对于一个平面上点的集合P={(xi,yi )},定义集合P的面积F(P)为点集P的凸包的面积. 对于两个点集A和B,定义集合的和为: A+B={(xiA+xjB,yiA+yjB ...

  4. bzoj 2564 集合的面积

    Description 对于一个平面上点的集合P={(xi,yi )},定义集合P的面积F(P)为点集P的凸包的面积. 对于两个点集A和B,定义集合的和为: A+B={(xiA+xjB,yiA+yjB ...

  5. 洛谷P4557 [JSOI2018]战争(闵可夫斯基和+凸包)

    题面 传送门 题解 看出这是个闵可夫斯基和了然而我当初因为见到这词汇是在\(shadowice\)巨巨的\(Ynoi\)题解里所以压根没敢学-- 首先您需要知道这个 首先如果有一个向量\(w\)使得\ ...

  6. HDU 5251 矩形面积(二维凸包旋转卡壳最小矩形覆盖问题) --2015年百度之星程序设计大赛 - 初赛(1)

    题目链接   题意:给出n个矩形,求能覆盖所有矩形的最小的矩形的面积. 题解:对所有点求凸包,然后旋转卡壳,对没一条边求该边的最左最右和最上的三个点. 利用叉积面积求高,利用点积的性质求最左右点和长度 ...

  7. poj 3348:Cows(计算几何,求凸包面积)

    Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6199   Accepted: 2822 Description ...

  8. UVa 10652(旋转、凸包、多边形面积)

    要点 凸包显然 长方形旋转较好的处理方式就是用中点的Vector加上旋转的Vector,然后每个点都扔到凸包里 多边形面积板子求凸包面积即可 #include <cstdio> #incl ...

  9. 闵可夫斯基和(Mincowsky sum)

    一.概述 官方定义:两个图形A,B的闵可夫斯基和C={a+b|a∈A,b∈B}通俗一点:从原点向图形A内部的每一个点做向量,将图形B沿每个向量移动,所有的最终位置的并便是闵可夫斯基和(具有交换律) 例 ...

随机推荐

  1. 2018/7/26号碰到了个奇怪的问题(http有问题,但是ftp没毛病)

    过程大概是这样的 本来测试服务器中发ajax没问题,突然暴毙了,服务器又通过ajax发了另外一个请求(与之前不一样). nginx  reload 没毛病  ,ftp 也使用正常. 出了什么问题呢?  ...

  2. Linux学习笔记《六》

  3. [Objective-C语言教程]预处理器(18)

    Objective-C预处理器不是编译器的一部分,而是编译过程中的一个单独步骤. 简单来说,Objective-C预处理器只是一个文本替换工具,它指示编译器在实际编译之前进行必要的预处理. 我们将Ob ...

  4. git 服务器搭建及提交代码检查

    本地 git 服务,通常都会选择 gitlab.本人最先也是选择 gitlab,在 centos7 上按照官网的步骤进行安装,下载的速度难以忍受,无奈放弃.最终选择在 docker 中安装 gogs ...

  5. ThreadLocal父子线程传递实现方案

    介绍InheritableThreadLocal之前,假设对 ThreadLocal 已经有了一定的理解,比如基本概念,原理,如果没有,可以参考:ThreadLocal源码分析解密.在讲解之前我们先列 ...

  6. C# Command命令(行为型模式)+队列 实现事务,带异步命令重试机制和生命周期

    一.简介 耦合是软件不能抵御变变化的根本性原因,不仅实体对象与实体对象之间有耦合关系(如创建性设计模式存在的原因),对象和行为之间也存在耦合关系. 二.实战 1.常规开发中,我们经常会在控制器中或者M ...

  7. Intellij-插件安装-JRebel热部署插件安装

    环境介绍: Win7.JDK1.8.maven+jetty插件.SpringMVC.Intellij IDEA 2018.1.2 安装插件: 在线安装: Settings --> Plugins ...

  8. Eclipse 工程目录下的.classpath、.project文件和.settings文件作用

    1..classpath 定义了你这个项目在编译时所使用的$CLASSPATH (注: 每次在更新jar的版本或者增加jar之后,请在SVN提交.classpath文件,否则工程的build path ...

  9. 关于 Spring Security 5 默认使用 Password Hash 算法

    账户密码存储的安全性是一个很老的话题,但还是会频频发生,一般的做法是 SHA256(userInputpwd+globalsalt+usersalt) 并设置密码时时要求长度与大小写组合,一般这样设计 ...

  10. jq通过对象获取其ID值,再简单ajax传到后台改值

    <tbody> <tr> <#if scopes?exists> <#list scopes as scopes> <td id='${(scop ...