update in 2019.1.21 优化了一下文中年代久远的代码 的格式……

什么是决策单调性?

在满足决策单调性的情况下,通常决策点会形如1111112222224444445555588888.....

即不可能会出现后面点的决策点小于前面点的决策点这种情况。

那么这个性质应该如何使用呢?

 1,二分。

  考虑到决策点单调递增,因此我们考虑用单调队列存下当前的决策选取情况。

  单调队列中存的量会带3个信息:这是哪个决策点,这个决策点会给哪个区间的点产生贡献(这是一个区间,所以算2个信息)

  相当于队列中存了很多个区间,假设当前的决策点是这样的:1111112222222333333,

  现在插入4这个决策,那么我们就是要找到最靠左的合法位置将决策序列变为类似这样的序列:111111222222444444444,

  因为决策单调,所以要覆盖肯定是一整段一整段的覆盖,因此我们先判断4是否可以覆盖完3这个区间,只需要看3的左端点是否可以被替换即可。

  我们重复覆盖整个区间这个操作,直到有个区间无法被完整覆盖,或者已经到了不合法的位置(因为第x个点只能给区间[x + 1, n]内的点产生贡献)。

  如果这个区间无法被完整覆盖,那么我们就在这个区间内二分找到最靠左的点使得4可以替换掉这个区间内的数,然后修改管理这个区间的数的区间,把被覆盖的区间让给4.

  每次操作前弹掉已经没有用的决策点,于是可以实现O(1)转移。(例如当前队首的决策点可以更新[3, x-1]这个区间,但我们已经枚举到x了,所以这个决策点显然就没有什么用了)  

  以下是某个年代久远的一道决策单调性优化的代码。

 /*[NOI2009]诗人小G by ww3113306*/
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 100100
#define LL long long
#define LD long double
#define ac 101000
#define inf 1000000000000000000LL
int t, L, p, n;
int Next[AC], s[AC], last[AC], l[AC], r[AC];//对应决策的管理区间,Next对last进行相反操作,以便输出
int q[AC], head, tail;//存下当前是哪个决策
LD f[AC];
LL sum[AC];
char ss[ac][]; inline LD qpow(LD x)//error!!!x也要用LD!!!
{
LD ans = ;int have = p;
while(have)
{
if(have & ) ans *= x;
x *= x, have >>= ;
}
return ans;
} inline LD count(int x, int j){return f[j] + qpow(abs(sum[x] - sum[j] - L - ));}//j --- > x inline void pre()
{
scanf("%d%d%d", &n, &L, &p);
for(R i = ; i <= n; i ++)
{
scanf("%s", ss[i] + );
s[i] = strlen(ss[i] + ) + ;//加上后面的空格
sum[i] = sum[i-] + s[i];//求出前缀和
}
} void half(int x)//二分查找
{
int now = q[tail], ll = max(l[now], x + ), rr = n, mid;//因为可能可以覆盖多个区间
while(ll < rr)
{
mid = (ll + rr) >> ;
if(count(mid, x) < count(mid, now)) rr = mid;//如果更优就往左缩短
else ll = mid + ;//不然就向右寻找
}
r[q[tail]] = ll - ;
q[++tail] = x, l[x] = ll, r[x] = n;
} inline void getans()
{
head = , tail = , q[] = , l[] = , r[] = n;
for(R i = ; i <= n; i ++)
{
while(r[q[head]] < i) ++head;//如果当前队首已经取不到了
int now = q[head];
f[i] = count(i, now);//error ??? 用函数的话会爆了会自动转换为inf?
last[i] = now;
if(count(n, q[tail]) < count(n, i)) continue;//如果最后一个都不够优,那就不二分了
while(count(l[q[tail]], q[tail]) > count(l[q[tail]], i)) --tail;//如果当前可以覆盖前面的整个区间
half(i);//注意上面的while要在调用half之前修改,这样取到的now才是正确的
}
} inline void write()
{
if(f[n] > inf) puts("Too hard to arrange");
else
{
printf("%lld\n", (LL)(f[n] + 0.5));//注意精度误差
for(R i = n; i; i = last[i]) Next[last[i]] = i;
int now = ;
for(R i = ; i <= n; i ++)
{
now = Next[now];//now先跳了吧
int be = now;//先只到这行结尾,因为for还要加的
for(R j = i; j < be; j ++) printf("%s ", ss[j] + );
printf("%s\n", ss[be] + ), i = be;//最后再赋i,因为for中还要用到当前i
}
}
puts("--------------------");
} int main()
{
scanf("%d", &t);
while(t--) pre(), getans(), write();
return ;
}

 2,分治

  假设我们当前的被决策区间是[l, r], 决策点区间是[ll, rr],那么我们取被决策区间的中点mid = (l + r) >> 1,然后在[ll, rr]中暴力寻找mid的最优决策点k,于是根据决策单调性,我们有:

  被决策区间[l, mid - 1]对应的决策点区间是[ll, k].同理,被决策区间[mid + 1, r]对应的决策点区间是[k, rr],于是我们就将这个区间划分为了2半,不断向下递归减小决策点范围即可用正确的复杂度求出所有的转移。

算法学习——决策单调性优化DP的更多相关文章

  1. Lightning Conductor 洛谷P3515 决策单调性优化DP

    遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序 ...

  2. CF868F Yet Another Minimization Problem 分治决策单调性优化DP

    题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...

  3. 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)

    传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...

  4. [BZOJ4850][JSOI2016]灯塔(分块/决策单调性优化DP)

    第一种方法是决策单调性优化DP. 决策单调性是指,设i>j,若在某个位置x(x>i)上,决策i比决策j优,那么在x以后的位置上i都一定比j优. 根号函数是一个典型的具有决策单调性的函数,由 ...

  5. BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】

    Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...

  6. 决策单调性优化dp 专题练习

    决策单调性优化dp 专题练习 优化方法总结 一.斜率优化 对于形如 \(dp[i]=dp[j]+(i-j)*(i-j)\)类型的转移方程,维护一个上凸包或者下凸包,找到切点快速求解 技法: 1.单调队 ...

  7. BZOJ4899: 记忆的轮廓【概率期望DP】【决策单调性优化DP】

    Description 通往贤者之塔的路上,有许多的危机. 我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增, 在[1,n]中,一共有n个节点.我 ...

  8. 2018.10.14 NOIP训练 猜数游戏(决策单调性优化dp)

    传送门 一道神奇的dp题. 这题的决策单调性优化跟普通的不同. 首先发现这道题只跟r−lr-lr−l有关. 然后定义状态f[i][j]f[i][j]f[i][j]表示猜范围为[L,L+i−1][L,L ...

  9. 洛谷 P5897 - [IOI2013]wombats(决策单调性优化 dp+线段树分块)

    题面传送门 首先注意到这次行数与列数不同阶,列数只有 \(200\),而行数高达 \(5000\),因此可以考虑以行为下标建线段树,线段树上每个区间 \([l,r]\) 开一个 \(200\times ...

随机推荐

  1. 序号生成算法odoo

    def get_sum_seq(self, cr, uid, ids, name, args=None, context=None): if not ids: return {} result={} ...

  2. ASP.NET Core MVC中URL和数据模型的匹配

    Http GET方法 首先我们来看看GET方法的Http请求,URL参数和ASP.NET Core MVC中Controller的Action方法参数匹配情况. 我定义一个UserController ...

  3. javascript闭包的使用--按钮切换

    闭包实现按钮状态切换 看下面的代码: var toggleBtn = document.getElementById('toggle'); var toggleFun = (function() { ...

  4. PV和并发、以及计算web服务器的数量的方法

    几个概念 网站流量是指网站的访问量,用来描述访问网站的用户数量以及用户所浏览的网页数量等指标,常用的统计指标包括网站的独立用户数量.总用户数量(含重复访问者).网页浏览数量.每个用户的页面浏览数量.用 ...

  5. [Oracle][Partition][Controlfile]Partition 操作是否和 Controlfile有关?

    Partition 操作是否和 Controlfile有关? 通过实验来判断: 对比 Partition 前后的操作,看看controlfile 的dump 信息中是否有记录,结果发现没有记录在 co ...

  6. System.Data.SqlClient.SqlException:“对象名 'customer' 无效。"

    连接数据库出错, 错误原因:表名错误.

  7. 【JVM.11】Java内存模型与线程

    鲁迅曾经说过“并发处理的广泛应用是使得Amdahl定律代替摩尔定律成为计算机性能发展源动力的根本原因,也是人类‘压榨‘ 计算机运行能力的最有力武器.” 一.概述 多任务处理在现代计算机操作系统中几乎已 ...

  8. subprocess.Popen指令包含中文导致乱码问题解决

    其实解决起来非常简单,如果了解到Windows中文系统编码为GB2312的话 只需将你包含中文的指令字符串编码为GB2312即可 cmd = u'cd 我的文档' cmd.encode('gb2312 ...

  9. slurm.conf系统初始配置

    #slurm集群配置 ##集群名称 ClusterName=myslurm ##主控制器的主机名 ControlMachine=node11 ##主控制器的IP地址 ControlAddr=192.1 ...

  10. python基础学习笔记(九)

    python异常 python用异常对象(exception object)来表示异常情况.遇到错误后,会引发异常.如果异常对象并未被处理或捕捉,程序就会用所谓的 回溯(Traceback, 一种错误 ...