luogu3195/bzoj1010 玩具装箱(斜率优化dp)
推出来式子然后斜率优化水过去就完事了
- #include<cstdio>
- #include<cstring>
- #include<algorithm>
- #include<vector>
- #include<queue>
- #include<cmath>
- #define inf 0x3f3f3f3f
- #define LL long long int
- using namespace std;
- const int maxn=;
- inline LL rd(){
- LL x=;char c=getchar();int neg=;
- while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
- while(c>=''&&c<='') x=x*+c-'',c=getchar();
- return x*neg;
- }
- int N;
- LL co[maxn],sm[maxn],f[maxn],L;
- int q[maxn],h,t;
- inline LL pw2(LL x){return x*x;}
- inline bool judge1(int j1,int j2,int i){
- return f[j1]+pw2(j1+sm[j1])-f[j2]-pw2(j2+sm[j2])<(*i+*sm[i]-*L-)*(j1+sm[j1]-j2-sm[j2]);
- }
- inline bool judge2(int j1,int j2,int j3){
- return (f[j1]+pw2(j1+sm[j1])-f[j2]-pw2(j2+sm[j2]))*(j2+sm[j2]-j3-sm[j3])<
- (f[j2]+pw2(j2+sm[j2])-f[j3]-pw2(j3+sm[j3]))*(j1+sm[j1]-j2-sm[j2]);
- }
- int main(){
- int i,j,k;
- N=rd();L=rd();
- for(i=;i<=N;i++)co[i]=rd(),sm[i]=sm[i-]+co[i];
- h=t=;q[]=;
- for(i=;i<=N;i++){
- while(h<t&&!judge1(q[h],q[h+],i)) h++;
- f[i]=f[q[h]]+pw2(i-q[h]-+sm[i]-sm[q[h]]-L);
- while(h<t&&!judge2(q[t-],q[t],i)) t--;
- q[++t]=i;
- }printf("%lld\n",f[N]);
- return ;
- }
luogu3195/bzoj1010 玩具装箱(斜率优化dp)的更多相关文章
- BZOJ1010玩具装箱 - 斜率优化dp
传送门 题目分析: 设\(f[i]\)表示装前i个玩具的花费. 列出转移方程:\[f[i] = max\{f[j] + ((i - (j + 1)) + sum[i] - sum[j] - L))^2 ...
- BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...
- BZOJ 1010 玩具装箱(斜率优化DP)
dp[i]=min(dp[j]+(sum[i]-sum[j]+i-j-1-L)^2) (j<i) 令f[i]=sum[i]+i,c=1+l 则dp[i]=min(dp[j]+(f[i]-f[j] ...
- HNOI2008玩具装箱 斜率优化
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- BZOJ 1010 HNOI2008 玩具装箱 斜率优化
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1010 Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的 ...
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ...
- 2018.09.05 bzoj1010: [HNOI2008]玩具装箱toy(斜率优化dp)
传送门 一道经典的斜率优化dp. 推式子ing... 令f[i]表示装前i个玩具的最优代价. 然后用老套路. 我们只考虑把第j+1" role="presentation" ...
- 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- 【BZOJ1010】【HNOI2008】玩具装箱toy (斜率优化DP) 解题报告
题目: 题目在这里 思路与做法: 这题不难想. 首先我们先推出一个普通的dp方程: \(f_i = min \{ f_j+(i-j-1+sum_i-sum_j-L)^2\}\) 然后就推一推式子了: ...
随机推荐
- MGR主从不一致问题排查与修复
运行环境 linux:CentOS release 6.8 (Final) kernel:2.6.32-642.6.2.el6.x86_64 mysql Server version: 5.7.21- ...
- 基于Angular+WebAPI+OData的增删改查
对于在ASP.NET WebAPI中怎么使用OData,已经在我前面的日志中的说明, 在ASP.NET Web API中使用OData 在这个示例中.我新建了一个Order的实体,在前端使用Angul ...
- python-小知识点-14
''' python2 python3 ''' #python2 print() print 'abc' range() xrange() 生成器 raw_input() #python3 print ...
- react/React Native 在 import 导入时,有的带花括号{},有的不带原理解析
在使用import引用模块时,如何正确使用{} 例如:有两个文件,home.js.user.js 一:不使用{}: 当需要在home.js中引入user.js的时候 //home.js 文件中impo ...
- Daily Scrumming* 2015.12.20(Day 12)
一.团队scrum meeting照片 二.成员工作总结 姓名 任务ID 迁入记录 江昊 任务1090 https://github.com/buaaclubs-team/temp-front/com ...
- package.json中的几种依赖注册对象解析
本博文根据官网+google翻译+自己的理解,欢迎指出翻译的不到位的地方. package.json的重要性不言而喻,一直以来对几种依赖注册对象的区别和作用不是很了解,今日一探究竟. dependen ...
- 【Deep Hash】CNNH
[AAAI 2014] Supervised Hashing via Image Representation Learning [paper] [code] Rongkai Xia , Yan Pa ...
- vuex的数据交互
methods:{ ...mapMutations({aaa:hs}) //将mutations的方法暴露出来,进行调用 aaa是他的名字 ...mapActions(['hs']) //将actio ...
- vue的使用1
Vue.$set(object, key, value); <!-- Alt + C --> <input @keyup.alt.="clear"> < ...
- [转帖]Nginx的超时keeplive_timeout配置详解
Nginx的超时keeplive_timeout配置详解 https://blog.csdn.net/weixin_42350212/article/details/81123932 Nginx ...