考虑统计每一轮(以抽到小丑为一轮)的贡献,不难发现答案即期望轮数*每轮期望次数

关于期望轮数,当前牌堆里已经在$S$中的卡实际上没有意义,不妨将这一类卡从牌堆中删除

此时,定义$f_{i}$表示$S$中含有$n-i$个元素,之后期望还需要几轮(包括当前这轮)

显然$f_{0}=1$,问题即求$f_{n}$,不难得到转移为$f_{i}=\frac{m}{m+i}(f_{i}+1)+\frac{i}{m+i}f_{i-1}$

将其化简,即有$f_{i}=f_{i-1}+\frac{m}{i}$,因此$f_{n}=\sum_{i=1}^{n}\frac{m}{i}+1$

关于每轮期望次数,定义$g_{i}$表示前$i$次未抽到小丑的概率(也即$P(X\ge i+1)$)

显然$g_{0}=1$,问题即求$\sum_{i=0}^{n}g_{i}$,转移为$g_{i+1}=\frac{n-i}{m+n-i}g_{i}$,即有$g_{i}=\frac{n!(m+n-i)!}{(n-i)!(m+n)!}$

期望次数为$\sum_{i=0}^{n}g_{i}=\frac{n!}{(m+n)!}\sum_{i=0}^{n}m!{n+m-i\choose m}=\frac{{m+n+1\choose n}}{m+n\choose n}=\frac{n}{m+1}+1$

最终,答案即$(\sum_{i=1}^{n}\frac{m}{i}+1)(\frac{n}{m+1}+1)$,时间复杂度为$o(n)$

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 3000005
4 #define mod 998244353
5 int n,m,ans,inv[N];
6 int main(){
7 inv[0]=inv[1]=1;
8 for(int i=2;i<N;i++)inv[i]=1LL*(mod-mod/i)*inv[mod%i]%mod;
9 scanf("%d%d",&n,&m);
10 for(int i=1;i<=n;i++)ans=(ans+1LL*m*inv[i])%mod;
11 ans=1LL*(ans+1)*(1LL*n*inv[m+1]%mod+1)%mod;
12 printf("%d",ans);
13 }

[cf1392H]ZS Shuffles Cards的更多相关文章

  1. Codeforces 1392H - ZS Shuffles Cards(DP+打表找规律)

    Codeforces 题面传送门 & 洛谷题面传送门 真·两天前刚做过这场的 I 题,今天模拟赛就考了这场的 H 题,我怕不是预言带师 提供一种奇怪的做法,来自于同机房神仙们,该做法不需要 M ...

  2. Solution -「CF 1392H」ZS Shuffles Cards

    \(\mathcal{Description}\)   Link.   打乱的 \(n\) 张编号 \(1\sim n\) 的数字排和 \(m\) 张鬼牌.随机抽牌,若抽到数字,将数字加入集合 \(S ...

  3. 组合数学 - 置换群的幂运算 --- poj CARDS (洗牌机)

    CARDS Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1448   Accepted: 773 Description ...

  4. POJ 1721 CARDS

    Alice and Bob have a set of N cards labelled with numbers 1 ... N (so that no two cards have the sam ...

  5. BZOJ 1004 【HNOI2008】 Cards

    题目链接:Cards 听说这道题是染色问题的入门题,于是就去学了一下\(Bunside\)引理和\(P\acute{o}lya\)定理(其实还是没有懂),回来写这道题. 由于题目中保证"任意 ...

  6. Codeforces Round #384 (Div. 2) 734E Vladik and cards

    E. Vladik and cards time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  7. bzoj 1004 Cards

    1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有 多少种染色方案,Sun ...

  8. codeforces 744C Hongcow Buys a Deck of Cards

    C. Hongcow Buys a Deck of Cards time limit per test 2 seconds memory limit per test 256 megabytes in ...

  9. Codeforces 711E ZS and The Birthday Paradox

    传送门 time limit per test 2 seconds memory limit per test 256 megabytes input standard input output st ...

随机推荐

  1. DCI架构是如何解决DDD战术建模缺点的?

    摘要:将DCI架构总结成一句话就是:领域对象(Object)在不同的场景(Context)中扮演(Cast)不同的角色(Role),角色之间通过交互(Interactive)来完成具体的业务逻辑. 本 ...

  2. 零基础怎么学Java?Java的运行机制是什么?Java入门基础!

    Java语言是当前流行的一种程序设计语言,因其安全性.平台无关性.性能优异等特点,受到广大编程爱好者的喜爱. 想学习Java语言的同学对于Java的运行机制是必须要了解的!! 计算机高级语言的类型主要 ...

  3. Python代码阅读(第21篇):将变量名称转换为蛇式命名风格

    Python 代码阅读合集介绍:为什么不推荐Python初学者直接看项目源码 本篇阅读的代码实现将变量名称转换为蛇式命名风格(snake case)的功能. 本篇阅读的代码片段来自于30-second ...

  4. javascript-jquery的ajax

    用一个例子来说明: html部分  <form action="name1"> <input class="class1" type=&quo ...

  5. javascript-原生-函数

    本节呢讲解js的函数部分,js函数部分总共分为两大类:1.自定义函数.2.系统函数 说白了,系统函数就是js自己内置的函数,其他的都属于自定义函数. 1.自定义函数 函数是完成指定功能的程序段,可以反 ...

  6. leetcode 6/300 Z字型变换 py

    目录 题目说明 方法一:利用flag 题目说明 方法一:利用flag 简单来说就是利用flag来表示方向,真的神来之笔. class Solution: def convert(self, s: st ...

  7. win10安装git fatal: open /dev/null or dup failed: No such file or directory错误解决方法

    原因看大家意思应该是 非即插即用驱动文件null.sys问题. 网上有很多方案.最后试了一个可行的. 替换  windows/system32/drivers/null.sys为网盘中的文件即可. 链 ...

  8. 零基础小白要如何跟好的学习嵌入式Linux(转)

    作为一个新人,怎样学习嵌入式Linux?被问过太多次,特写这篇文章来回答一下. 在学习嵌入式Linux之前,肯定要有C语言基础.汇编基础有没有无所谓(就那么几条汇编指令,用到了一看就会). C语言要学 ...

  9. oracle物化视图创建及删除

    --删除物化表的日志表 DROP MATERIALIZED VIEW LOG ON 表名; --为将要创建物化视图的表添加带主键的日志表 CREATE MATERIALIZED VIEW LOG ON ...

  10. TensorFlow从入门到入坑(2)

    TensorFlow学习(2) 一.jupyter notebook的安装和使用 1. 什么是jupyter notebook jupyter notebook(http://jupyter.org/ ...