[cf1392H]ZS Shuffles Cards
考虑统计每一轮(以抽到小丑为一轮)的贡献,不难发现答案即期望轮数*每轮期望次数
关于期望轮数,当前牌堆里已经在$S$中的卡实际上没有意义,不妨将这一类卡从牌堆中删除
此时,定义$f_{i}$表示$S$中含有$n-i$个元素,之后期望还需要几轮(包括当前这轮)
显然$f_{0}=1$,问题即求$f_{n}$,不难得到转移为$f_{i}=\frac{m}{m+i}(f_{i}+1)+\frac{i}{m+i}f_{i-1}$
将其化简,即有$f_{i}=f_{i-1}+\frac{m}{i}$,因此$f_{n}=\sum_{i=1}^{n}\frac{m}{i}+1$
关于每轮期望次数,定义$g_{i}$表示前$i$次未抽到小丑的概率(也即$P(X\ge i+1)$)
显然$g_{0}=1$,问题即求$\sum_{i=0}^{n}g_{i}$,转移为$g_{i+1}=\frac{n-i}{m+n-i}g_{i}$,即有$g_{i}=\frac{n!(m+n-i)!}{(n-i)!(m+n)!}$
期望次数为$\sum_{i=0}^{n}g_{i}=\frac{n!}{(m+n)!}\sum_{i=0}^{n}m!{n+m-i\choose m}=\frac{{m+n+1\choose n}}{m+n\choose n}=\frac{n}{m+1}+1$
最终,答案即$(\sum_{i=1}^{n}\frac{m}{i}+1)(\frac{n}{m+1}+1)$,时间复杂度为$o(n)$

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 3000005
4 #define mod 998244353
5 int n,m,ans,inv[N];
6 int main(){
7 inv[0]=inv[1]=1;
8 for(int i=2;i<N;i++)inv[i]=1LL*(mod-mod/i)*inv[mod%i]%mod;
9 scanf("%d%d",&n,&m);
10 for(int i=1;i<=n;i++)ans=(ans+1LL*m*inv[i])%mod;
11 ans=1LL*(ans+1)*(1LL*n*inv[m+1]%mod+1)%mod;
12 printf("%d",ans);
13 }
[cf1392H]ZS Shuffles Cards的更多相关文章
- Codeforces 1392H - ZS Shuffles Cards(DP+打表找规律)
Codeforces 题面传送门 & 洛谷题面传送门 真·两天前刚做过这场的 I 题,今天模拟赛就考了这场的 H 题,我怕不是预言带师 提供一种奇怪的做法,来自于同机房神仙们,该做法不需要 M ...
- Solution -「CF 1392H」ZS Shuffles Cards
\(\mathcal{Description}\) Link. 打乱的 \(n\) 张编号 \(1\sim n\) 的数字排和 \(m\) 张鬼牌.随机抽牌,若抽到数字,将数字加入集合 \(S ...
- 组合数学 - 置换群的幂运算 --- poj CARDS (洗牌机)
CARDS Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 1448 Accepted: 773 Description ...
- POJ 1721 CARDS
Alice and Bob have a set of N cards labelled with numbers 1 ... N (so that no two cards have the sam ...
- BZOJ 1004 【HNOI2008】 Cards
题目链接:Cards 听说这道题是染色问题的入门题,于是就去学了一下\(Bunside\)引理和\(P\acute{o}lya\)定理(其实还是没有懂),回来写这道题. 由于题目中保证"任意 ...
- Codeforces Round #384 (Div. 2) 734E Vladik and cards
E. Vladik and cards time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- bzoj 1004 Cards
1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有 多少种染色方案,Sun ...
- codeforces 744C Hongcow Buys a Deck of Cards
C. Hongcow Buys a Deck of Cards time limit per test 2 seconds memory limit per test 256 megabytes in ...
- Codeforces 711E ZS and The Birthday Paradox
传送门 time limit per test 2 seconds memory limit per test 256 megabytes input standard input output st ...
随机推荐
- 理解ASP.NET Core - 选项(Options)
注:本文隶属于<理解ASP.NET Core>系列文章,请查看置顶博客或点击此处查看全文目录 Options绑定 上期我们已经聊过了配置(IConfiguration),今天我们来聊一聊O ...
- 分片利器 AutoTable:为用户带来「管家式」分片配置体验
在<DistSQL:像数据库一样使用 Apache ShardingSphere>一文中,Committer 孟浩然为大家介绍了 DistSQL 的设计初衷和语法体系,并通过实战操作展示了 ...
- Filter防火墙
实验简介 实验属于防火墙系列 实验目的 了解个人防火墙的基本工作原理: 掌握Filter防火墙的配置. 实验环境 一台安装了win7操作系统的主机. 预备知识 防火墙 防火墙(Firewall)是一项 ...
- Data Management Tools(数据管理工具)《二》
(数据管理工具)<二> 点击跳转(数据管理工具)<一> 16.打包 # Process: 共享包 arcpy.SharePackage_management("&qu ...
- dubbo-admin的使用
目录 了解 dubbo-admin 下载 dubbo-admin 使用 dubbo-admin 1.dubbo-admin是什么 dubbo-admin是一个监控程序,可以通过web很方便的管理监控众 ...
- 关于SSTI的坑
SSTI注入 进过几天的CSDN和博客园以及个人博客的查询,我大概讲一下我对SSTI模板注入的理解. SSTI注入指的是模板注入(应该翻译就是模板注入) 就站在我所了解的知识水平(大概就是大一随便水了 ...
- 用C++实现的数独解题程序 SudokuSolver 2.1 及实例分析
SudokuSolver 2.1 程序实现 在 2.0 版的基础上,2.1 版在输出信息上做了一些改进,并增加了 runtil <steps> 命令,方便做实例分析. CQuizDeale ...
- Endian
Endian 寻址 多字节对象被存储为连续的字节序列,对象的地址为所使用字节中最小的地址. 例如,假设一个类型为 int 的变量 a 的地址为 0x100,也就是说,地址表达式 &a 的值为 ...
- 初识HTML01
什么是页面? 页面是基于浏览器的应用程序 页面是数据展示的载体,由浏览器和服务器共同执行产物. 浏览器的功能 向服务器发送用户请求指令 接收并解析数据展示给用户 服务器的功能 存储页面资源 处理并响应 ...
- 【Spring】IoC容器 - Spring Bean作用域Scope(含SpringCloud中的RefreshScope )
前言 上一章学习了[依赖来源],本章主要讨论SpringBean的作用域,我们这里讨论的Bean的作用域,很大程度都是默认只讨论依赖来源为[Spring BeanDefinition]的作用域,因为在 ...