CF1601E Phys Ed Online
考虑一个贪心。
我们一定采取的方案是
\(b_i = \min_{j = i - k}^i a_j\)
\(\sum a_l + b_{l + k} + \min_{i = 1}^2{b_{l + ik}} + \min_{i = 1}^3{b_{l + ik}}......\min_{i = 1}^t{b_{l + ik}}\)
那么我们看出来可以只考虑同余系的关键点即可。
但是我们发现我们不好计算答案。
一个想要的考虑是扫描线。
但是我们发现这样需要支持区间加,区间取 \(0\),区间加等差数列,单点查。
然后我发现我不会区间加等差数列,所以只能考虑正解做法。
考虑我们差分答案,记\(f_i\)为一直到结尾的答案,考虑倒序枚举\(i\),直接单调栈,其转移显然。
那么\([l,r]\)答案应为\(f_i - f_p + b_p * {(r - p + 1)} + a_l\)
\(p\)为\([l,r]\)中最小值位置。
考虑笛卡尔树上的\([l,r]\)的最小值位置即其两点\(LCA\)位置。
那么复杂度为\(O(nlog{\frac{n}{k}} + q)\)
较正解做法\(O(nlog + q)\) 效率应该差距不大。
所以这里采用正解做法即ST表。
#include<bits/stdc++.h>
#define ll long long
#define N 600005
#define int ll
int n,q,k;
std::pair<int,int> g[N][30];//ST表
int lg[N],b[N];
std::pair<int,int> get(int l,int r){
if(l > r)
return std::pair<int,int>(0,0);
int p = lg[r - l + 1];
return std::min(g[l][p],g[r - (1ll << p) + 1][p]);
}
int stk[N],top,nxt[N],f[N];
ll calc(int l,int r){
int p = get(l - k,r).second;
int tmp = g[p][0].first;
if(p == l - k)
p += k;
p = p + (r - p) % k;
return f[l] - f[p] + (r / k - p / k + 1) * b[p];
}
signed main(){
scanf("%d%d%d",&n,&q,&k);
lg[0] = -1;
for(int i = 1;i <= n;++i)
lg[i] = lg[i / 2] + 1;
for(int i = 1;i <= n;++i){
scanf("%d",&g[i][0].first);
g[i][0].second = i;
}
for(int j = 1;j <= 20;++j)
for(int i = 1;i + (1ll << j) - 1 <= n;++i)
g[i][j] = std::min(g[i][j - 1],g[i + (1ll << (j - 1))][j - 1]);
for(int i = k + 1;i <= n;++i)
b[i] = get(i - k,i).first;
for(int l = k + 1;l + k <= n && l <= 2 * k;++l){
int r = l + (n - l) / k * k;
top = 1;
for(int i = r;i >= l;i -= k){
while(top > 1 && b[i] <= b[stk[top]])
top -- ;
nxt[i] = stk[top];
f[i] = f[nxt[i]] + b[i] * (nxt[i] / k - i / k);
stk[++top] = i;
}
}
while(q -- ){
int l,r;
scanf("%d%d",&l,&r);
r = l + (r - l) / k * k;
std::cout<<(1ll * g[l][0].first + 1ll * (l + k <= r? calc(l + k,r) : 0))<<std::endl;
}
}
CF1601E Phys Ed Online的更多相关文章
- 贪心/构造/DP 杂题选做Ⅲ
颓!颓!颓!(bushi 前传: 贪心/构造/DP 杂题选做 贪心/构造/DP 杂题选做Ⅱ 51. CF758E Broken Tree 讲个笑话,这道题是 11.3 模拟赛的 T2,模拟赛里那道题的 ...
- EDdb 是ED数据
eddb 是ED数据统计汇总软件的简称,用于统计汇总企事业单位的各类信息数据. 采用Excel界面,操作简单. 对各类信息数据,均可以自定义数据格式,通过internet联网,收集各类信息数据,并通 ...
- ios CoreBluetooth 警告 is being dealloc'ed while pending connection
ios CoreBluetooth 警告 is being dealloc'ed while pending connection CoreBluetooth[WARNING] <CBPerip ...
- ed编辑器使用
evilxr@IdeaPad:/tmp$ ed aa.c 0 a enter another words hello nice www.evilxr.com . w aa.c 46 q a 表示添加内 ...
- Linux ed命令
$ ed <- 激活 ed 命令 a <- 告诉 ed 我要编辑新文件 My name is Titan. <- 输入第 ...
- ED/EP系列5《消费指令》
1. 消费交易 消费交易允许持卡人使用电子存折或电子钱包的余额进行购物或获取服务. 特点: 1) --可以在销售点终端(POS)上脱机进行 2) --使用电子存折进行的消费交易必须提交个人识别码(PI ...
- ED/EP系列4《圈存指令》
1. 圈存交易 通过圈存交易,持卡人可将其在银行相应账户上的资金划入电子存折或电子钱包中. 特点: 1)--必须在金融终端上联机进行; 2)--必须提交个人识别码(PIN) 步骤: 1) --终端: ...
- ED/EP系列1《简介》
电子存折(ED:ElectronicDeposit)一种为持卡人进行消费.取现等交易而设计的支持个人识别码(PIN)保护的金融IC卡应用.它支持圈存.圈提.消费和取现等交易. 电子钱包(EP:Elec ...
- ED/EP简介
ED:electronic Deposit,电子存折 EP:electronic Purse,电子钱包 PIN:personal identification number,个人识别码 MAC:Mes ...
随机推荐
- Spark解决SQL和RDDjoin结果不一致问题(工作实录)
问题描述:DataFrame的join结果不正确,dataframeA(6000无重复条数据) join dataframeB(220条无重复数据,由dataframeA转化而来,key值均源于dat ...
- javascript-原生-闭包
1.变量的作用域 前提:这里只全部都通过var创建的变量或对象 1.全局变量:函数外创建变量 var x=10; function test(){ alert("全局变量在test函数中&q ...
- 【UE4 设计模式】策略模式 Strategy Pattern
概述 描述 策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换.策略模式让算法的变化不会影响到使用算法的客户. 套路 Context(环境类) 负责使用算法策略,其中维持了一 ...
- windows下wchar_t的问题
使用vs新建工程或者编译工程的时候默认在编译设置里面讲wchar_t设置为内置类型,如下图: 但是在编译相互依赖的工程的时候,如果有的工程不将wchar_t设置为内置类型的时候,将会出现链接错误,需要 ...
- Python中的括号()、[]、{}
长时间不用容易混淆,仅记! 在Python语言中最常见的括号有三种,分别是:小括号().中括号[].花括号{} . Python中的小括号(): 代表tuple元祖数据类型,元祖是一种不可变序列.大多 ...
- Python网络爬虫实战入门
一.网络爬虫 网络爬虫(又被称为网页蜘蛛,网络机器人),是一种按照一定的规则,自动地抓取万维网信息的程序. 爬虫的基本流程: 发起请求: 通过HTTP库向目标站点发起请求,也就是发送一个Request ...
- 第07课 OpenGL 光照和键盘(1)
光照和键盘控制: 在这一课里,我们将添加光照和键盘控制,它让程序看起来更美观. 这一课我会教您如何使用三种不同的纹理滤波方式.教您如何使用键盘来移动场景中的对象,还会教您在OpenGL场景中应用简单的 ...
- Vue2高级原理
<div id="app"> <input type="text" v-model="username"> ...
- 『学了就忘』Linux基础命令 — 18、Linux命令的基本格式
目录 1.命令提示符说明 2.命令的基本格式 (1)举例ls命令 (2)说明ls -l命令的 输出内容 1.命令提示符说明 [root@localhost ~] # []:这是提示符的分隔符号,没有特 ...
- TTMS 一个基于Java Swing的Socket通信的剧院票务管理系统
TTMS (Theater Ticket Management System) 点我进入github TTMS全称剧院票务管理系统,分为客户端和服务器端.服务器端可以接收客户端连接请求,客户端相当于我 ...