记可乐为1,汉堡为-1,即求过程中绝对值不超过k的最短路。

然后发现k的范围仅为10,也就是说过程中合法的值仅有21种,因此跑一遍dij或spfa(嘿嘿嘿)即可。

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define pi pair<int,int>
4 #define mp make_pair
5 #define fi first
6 #define se second
7 #define N 10005
8 queue<pi >q;
9 struct ji{
10 int nex,to,len;
11 }edge[N*20];
12 int E,t,n,m,k,x,y,z,ans,d[N][41],vis[N][41],head[N],p[N];
13 void add(int x,int y,int z){
14 edge[E].nex=head[x];
15 edge[E].to=y;
16 edge[E].len=z;
17 head[x]=E++;
18 }
19 int main(){
20 scanf("%d",&t);
21 while (t--){
22 scanf("%d%d%d",&n,&m,&k);
23 memset(d,0x3f,sizeof(d));
24 memset(head,-1,sizeof(head));
25 memset(vis,0,sizeof(vis));
26 E=0;
27 for(int i=1;i<=n;i++){
28 scanf("%d",&p[i]);
29 p[i]=p[i]*2-3;
30 }
31 for(int i=1;i<=m;i++){
32 scanf("%d%d%d",&x,&y,&z);
33 add(x,y,z);
34 add(y,x,z);
35 }
36 scanf("%d%d",&x,&y);
37 d[x][p[x]+20]=0;
38 vis[x][p[x]+20]=1;
39 q.push(mp(x,p[x]+20));
40 while (!q.empty()){
41 pi o=q.front();
42 q.pop();
43 vis[o.fi][o.se]=0;
44 for(int i=head[o.fi];i!=-1;i=edge[i].nex){
45 x=edge[i].to;
46 if ((abs(o.se+p[x]-20)<=k)&&(d[o.fi][o.se]+edge[i].len<d[x][o.se+p[x]])){
47 d[x][o.se+p[x]]=d[o.fi][o.se]+edge[i].len;
48 if (!vis[x][o.se+p[x]]){
49 q.push(mp(x,o.se+p[x]));
50 vis[x][o.se+p[x]]=1;
51 }
52 }
53 }
54 }
55 ans=0x3f3f3f3f;
56 for(int i=20-k;i<=k+20;i++)ans=min(ans,d[y][i]);
57 if (ans==0x3f3f3f3f)ans=-1;
58 printf("%d\n",ans);
59 }
60 }

[bzoj5511]大中锋的游乐场的更多相关文章

  1. [TJOI2019]大中锋的游乐场——最短路+DP

    题目链接: [TJOI2019]大中锋的游乐场 题目本质要求的还是最短路,但因为有第二维权值(汽水看成$+1$,汉堡看成$-1$)的限制,我们在最短路的基础上加上一维$f[i][j]$表示到达$i$节 ...

  2. 【题解】Luogu P5340 [TJOI2019]大中锋的游乐场

    原题传送门 没想到省选也会出这种题??! 实际就是一个带有限制的最短路 因为\(k<=10\),所以我们珂以暴力将每个点的权值分为[-k,k],为了方便我们珂以转化成[0,2k],将汉堡的权值记 ...

  3. [洛谷P5340][TJOI2019]大中锋的游乐场

    题目大意:有$n(n\leqslant10^4)$个点,$m(m\leqslant10^5)$条边的无向图,每个点有一个属性$A/B$,要求$|cnt_A-cnt_B|\leqslant k(k\le ...

  4. 「TJOI2019」大中锋的游乐场

    题目链接 问题分析 比较明显的最短路模型.需要堆优化的dij.建图的时候注意细节就好. 参考程序 #include <bits/stdc++.h> #define LL long long ...

  5. luogu P5340 [TJOI2019]大中锋的游乐场

    传送门 要求经过路径汉堡的点和可乐的点个数之差绝对值\(\le k\),所以可以考虑dp,\(f_{i,j}\)表示到点\(i\),汉堡的点个数减可乐的点的个数为\(j\)的最短距离,注意一下负下标处 ...

  6. [TJOI2019]甲苯先生和大中锋的字符串——后缀自动机+差分

    题目链接: [TJOI2019]甲苯先生和大中锋的字符串 对原串建后缀自动机并维护$parent$树上每个点的子树大小,显然子树大小为$k$的节点所代表的子串出现过$k$次,那么我们需要将$[len[ ...

  7. 洛谷P5341 [TJOI2019]甲苯先生和大中锋的字符串

    原题链接P5341 [TJOI2019]甲苯先生和大中锋的字符串 题目描述 大中锋有一个长度为 n 的字符串,他只知道其中的一个子串是祖上传下来的宝藏的密码.但是由于字符串很长,大中锋很难将这些子串一 ...

  8. Tjoi2019 甲苯先生和大中锋的字符串 后缀自动机_差分

    tjoi胆子好大,直接出了两道送分题...... 都 9102 年了,还有省选出模板题QAQ...... Code: #include <bits/stdc++.h> #define se ...

  9. 【题解】Luogu P5341 [TJOI2019]甲苯先生和大中锋的字符串

    原题传送门 实际按照题意模拟就行 我们先求出字符串的sa 因为要在字符串中出现k次,所以我们枚举\(l,r(r-l+1=k)\)看一共有多少种合法的方案 合法方案的长度下界\(lb\)为\(Max(h ...

随机推荐

  1. 11.4.2 LVS—NAT

    Virtual Server via NAT(VS-NAT) 用地址翻译实现虚拟服务器。地址转换器有能被外界访问到的合法IP地址,它修改来自专有网络的流出包的地址。外界看起来包是来自地址转换器本身,, ...

  2. display:none、visibility:hidden,opacity:0三者区别

    1. display:none 设置display:none,让这个元素消失 消失不占据原本任何位置 连带子元素一起消失 元素显示:display:block 2. visibility:hidden ...

  3. caffe.cpp解析

    来自链接:http://blog.csdn.net/u014114990/article/details/47747025 主要讲解:GetBrewFunction()函数定义如下,其返回BrewFu ...

  4. sprintboot整合mybatis查询不出数据

    数据库有数据,程序没有任何报错,但是查询结果没有数据,list显示[null,nul]. 检查了sql语句,以及controller.service.mapper,检查没发现问题,怀疑是字段映射问题. ...

  5. Android QMUI实战:沉浸式/适配状态栏

    近期研究QMUI换肤的实现,顺便分析了下QMUI的沉浸式. 网上已有很多关于QMUI实现页面沉浸式的文章,简而言之:复杂了. 本期,我们仅通过几行代码,即可完美实现页面沉浸式效果,并轻松匹配换肤的色彩 ...

  6. C#特性知识图谱-一、委托

    一. 委托 1.1 委托定义 委托可以看成是一个方法的容器,将某一具体的方法装入后就可以把它当成方法一样调用.一个委托类型的变量可以引用任何一个满足其要求的方法.委托类似于C语言中的函数指针,但并不完 ...

  7. 小白自制Linux开发板 七. USB驱动配置

    本文章基于https://whycan.com/t_3087.htmlhttps://whycan.com/t_6021.html整理 F1c100s芯片支持USB的OTG模式,也就是可以通过更改Us ...

  8. Selenium获取动态图片验证码

    Selenium获取动态图片验证码 关于图片验证码的文章,我想大家都有一定的了解了. 在我们做UI自动化的时候,经常会遇到图片验证码的问题. 当开发不给咱们提供万能验证码,或者测试第三方网站比如知乎的 ...

  9. elasticsearch的bulk(批量)操作

    在es中我们可能会有这么一种需求,即有时需要批量向es中插入或更新或删除数据,如果一条一条数据的操作,那么速度必然很慢,那么es的bulk api就可以派上用场. delete 删除操作,只需要写一个 ...

  10. dice_game攻防世界进阶区

    dice_game XCTF 4th-QCTF-2018 前言,不得不说,虽然是个简单题但是还是要记录一下,来让自己记住这些东西. 考察的知识点是: 1.cdll_loadlibrary加载对应库使得 ...