NOIP 模拟4 T2
本题属于二和一问题 子问题相互对称
考虑对于问题一:知a求b
那么根据b数组定义式 显然能发现问题在于如何求dis(最短路)
有很多算法可供选择 dijsktra,floyed,bfs/dfs,spfa等
然而我们发现本题一个特点为边权相等(1) 显然应用dfs/bfs算法时间复杂度优于传统求最短路算法
考虑对于问题二:知b求a
同样,我们能很快明确高斯消元算法并且也需要计算dis数组
然而 观察数据范围 T<=5, 2<=n<=100000,1<=u,v<=n
显然这道题正解并不是高斯消元与最短路算法 因为空间与时间复杂度完全不可能(将dis数组转为一维 对于问题一能解决dis数组空间限制 然而对于其余关键算法无能为力)
那么在考场上正确的策略显然是对暴力求法进行优化而不是一味追求正解 顺着这个思路继续思考
考虑对于问题一:
算法瓶颈在于求解最短路的时间空间问题 分析数据范围我们发现至少复杂度要降低一个维度才可行
这启发我们利用递推方式求解 加之以本题是树形结构 思路就逐渐明了:二次扫描与换根法(对于NOIP模拟级习题 本算法显然不必多讲)
那么思维方向已现 考虑节点转移对于b数组的影响可推出 b[node[i].to] = b[from] + sum_w - w[node[i].to] * 2(其中w[i]代表已i为跟节点子树sigma(a))依次优化复杂度
考虑对于问题二:
尽管高斯消元不可行 但问题本质仍然为对b[i]的求解 也就是说同样需要消元求解
问题一的解法启发我们问题二应该也与树形结构有关
类比问题一 我们考虑节点转移对a数组的影响很容易得出 b[node[i].to] - b[from] = sum_w - w[node[i].to] * 2;
至此我们推出了将b[2]~b[n]与w[2]~w[n]联系在一起的式子 很容易想到要求b[1]与这些量之间的关系 易得 b[1] = sigma(w[i]) (i!=1)
显然连接纽带在于w数组 初等变换得 sigma(b[node[i].to - b[from]) = (n - 1)*sum_w - 2*sigma(w[i]) 代入b[1]得 sigma(b[node[i],to - b[from]]) + 2*b[1] = (n - 1)*sum_w;
代入求得sum_w 在将sum_w代回原式可解出w[i]
根据w[i]的定义 可知求解a数组只需要对w数组做差分即可
代码如下(主要是思路 代码无难度 建议练习)
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define I int
4 #define LL long long
5 #define B bool
6 #define C char
7 #define RE register
8 #define V void
9 #define L inline
10
11 const I MAXN = 100010;
12 I T,t,x,y,n;
13 LL a[MAXN],b[MAXN],sum[MAXN];
14 I num,head[MAXN];
15 LL SUM;
16 B jud[MAXN];
17 struct LYM
18 {
19 I to,next;
20 }node[MAXN << 1];
21 L I read(); L V store(I,I);
22 V dfs1(I); V dfs2(I); V dfs3(I); V dfs4(I);
23 signed main()
24 {
25 T = read();
26 while(T -- ){
27 n = read();
28 for(RE I i(1);i < n; ++ i){
29 x = read(),y = read();
30 store(x,y),store(y,x);
31 }
32 t = read();
33 if(t)
34 {
35 for(RE I i(1);i <= n; ++ i) b[i] = read();
36 dfs3(1); SUM += b[1] * 2; SUM /= n - 1;
37 sum[1] = SUM; dfs4(1);
38 for(RE I i(1);i <= n; ++ i) printf("%lld ",a[i]);
39 }
40 else
41 {
42 for(RE I i(1);i <= n; ++ i) a[i] = read();
43 dfs1(1);
44 for(RE I i(2);i <= n; ++ i) b[1] += sum[i];
45 dfs2(1);
46 for(RE I i(1);i <= n; ++ i) printf("%lld ",b[i]);
47 }
48 printf("\n");
49 num = 0,SUM = 0;
50 memset(head,0,sizeof(head));
51 memset(sum,0,sizeof(sum));
52 memset(a,0,sizeof(a));
53 memset(b,0,sizeof(b));
54 }
55 }
56 L I read()
57 {
58 RE I x(0),y(1); RE C z = getchar();
59 while(!isdigit(z)) y |= z == '-',z = getchar();
60 while(isdigit(z)) x = (x << 3) + (x << 1) + (z ^ 48),z = getchar();
61 return x * y;
62 }
63 L V store(I from,I to)
64 {
65 node[++num].to = to;
66 node[num].next = head[from];
67 head[from] = num;
68 }
69 V dfs1(I from){
70 jud[from] = 1;
71 sum[from] += a[from];
72 for(RE I i(head[from]); i ;i = node[i].next){
73 if(!jud[node[i].to]){
74 dfs1(node[i].to);
75 sum[from] += sum[node[i].to];
76 }
77 }
78 jud[from] = 0;
79 }
80 V dfs2(I from){
81 jud[from] = 1;
82 for(RE I i(head[from]); i ;i = node[i].next){
83 if(!jud[node[i].to]){
84 b[node[i].to] = b[from] + sum[1] - (sum[node[i].to] << 1);
85 dfs2(node[i].to);
86 }
87 }
88 jud[from] = 0;
89 }
90 V dfs3(I from){
91 jud[from] = 1;
92 for(RE I i(head[from]); i ;i = node[i].next){
93 if(!jud[node[i].to]){
94 SUM += b[node[i].to] - b[from];
95 dfs3(node[i].to);
96 }
97 }
98 jud[from] = 0;
99 }
100 V dfs4(I from){
101 jud[from] = 1;
102 LL tool = sum[from];
103 for(RE I i(head[from]); i ;i = node[i].next){
104 if(!jud[node[i].to]){
105 sum[node[i].to] = (SUM - b[node[i].to] + b[from]) >> 1;
106 dfs4(node[i].to);
107 tool -= sum[node[i].to];
108 }
109 }
110 a[from] = tool;
111 jud[from] = 0;
112 }
NOIP 模拟4 T2的更多相关文章
- noip模拟6(T2更新
由于蒟弱目前还没调出T1和T2,所以先写T3和T4.(T1T2更完辣! update in 6.12 07:19 T3 大佬 题目描述: 他发现katarina大佬真是太强了,于是就学习了一下kata ...
- 20161003 NOIP 模拟赛 T2 解题报告
Weed duyege的电脑上面已经长草了,经过辨认上面有金坷垃的痕迹. 为了查出真相,duyege 准备修好电脑之后再进行一次金坷垃的模拟实验. 电脑上面有若干层金坷垃,每次只能在上面撒上一层高度为 ...
- 20161023 NOIP 模拟赛 T2 解题报告
Task 2.回文串计数 (calc.pas/calc.c/calc.cpp) [题目描述] 虽然是一名理科生,Mcx常常声称自己是一名真正的文科生.不知为何,他对于背诵总有一种莫名的热爱,这也促使他 ...
- 20161005 NOIP 模拟赛 T2 解题报告
beautiful 2.1 题目描述 一个长度为 n 的序列,对于每个位置 i 的数 ai 都有一个优美值,其定义是:找到序列中最 长的一段 [l, r],满足 l ≤ i ≤ r,且 [l, r] ...
- 神奇的NOIP模拟赛 T2 LGTB 学分块
LGTB 学分块 LGTB 最近在学分块,但是他太菜了,分的块数量太多他就混乱了,所以只能分成3 块今天他得到了一个数组,他突然也想把它分块,他想知道,把这个数组分成3 块,块可以为空.假设3 块各自 ...
- 2018.02.12 noip模拟赛T2
二兵的赌注 Description游戏中,二兵要进入了一家奇怪的赌场.赌场中有n个庄家,每个庄家都可以猜大猜小,猜一次一元钱.每一次开彩前,你都可以到任意个庄家那里下赌注.如果开彩结果是大,你就可以得 ...
- ztz11的noip模拟赛T2:查房
链接: https://www.luogu.org/problemnew/show/U46611 思路: 这道题告你n-1条边就是骗你的 部分分也是骗你的 这道题连对边5分钟的事 一个点对另一个点有影 ...
- 2018.10.30 NOIp模拟赛T2 数字对
[题目描述] 小 H 是个善于思考的学生,现在她又在思考一个有关序列的问题. 她的面前浮现出一个长度为 n 的序列{ai},她想找出一段区间[L, R](1 <= L <= ...
- NOIP模拟18 T2
不知道为什么很多人拒绝这题打搜索...其实搜索在充分剪枝后时间是非常优秀的,不管数据怎样基本都可跑出 首先一个显然结论:对于某种状态,他抓到的小精灵一定是一个连续的区间. 因此我们可以枚举这个区间的左 ...
随机推荐
- poj_3617 解题
题意: 给定长度为N的字符串S,要构造一个长度为N的字符串T串. 从S的头部删除一个字符,加到T的尾部 从S的尾部删除一个字符,加到T的尾部 目标是构造字典序尽可能小的字符串. 示例输入: ACDBC ...
- Algorithm(4th) 1.5 union-find算法
问题描述 问题输入是一对整数对,每个整数都代表一个对象,一对整数"p,q"表示 "p与q相连"(具有自反性,传递性,对称性,被归到一个等价类里),要求编写程序来 ...
- 基于MATLAB的手写公式识别(2)
基于MATLAB的手写公式识别 图像的预处理(除去噪声.得到后续定位分割所需的信息.) 预处理其本质就是去除不需要的噪声信息,得到后续定位分割所需要的图像信息.图像信息在采集的过程中由于天气环境的影响 ...
- Review: JQuery
1.DOM access with jQuery 1 $("h1"); //select all the h1s 2 $("#heading"); // sel ...
- SLAM导航及控制部分,源码公布
欢迎Fork,觉得不错就点个小星星吧 ROS源码 https://github.com/ShieldQiQi/TX2_StereoSLAM STM32驱动板源码 https://github.com/ ...
- Windows核心编程 第六章 线程基础知识 (上)
第6章 线程的基础知识 理解线程是非常关键的,因为每个进程至少需要一个线程.本章将更加详细地介绍线程的知识.尤其是要讲述进程与线程之间存在多大的差别,它们各自具有什么作用.还要介绍系统如何使用线程内核 ...
- 【SpringMVC】数据校验时,抛出javax.validation.UnexpectedTypeException: HV000030: No validator could be found for type: java.util.Date.
老魏原创,转载请留言. 原因:给Javabean中的字段注解多余或者错误导致. @NotEmpty @Past @DateTimeFormat(pattern="yyyy-MM-dd&quo ...
- SQL必知必会 —— 性能优化篇
数据库调优概述 数据库中的存储结构是怎样的 在数据库中,不论读一行,还是读多行,都是将这些行所在的页进行加载.也就是说,数据库管理存储空间的基本单位是页(Page). 一个页中可以存储多个行记录(Ro ...
- HDU - 3347 Calculate the expression — 模拟 + map存变量
传送门 题意:从输入开始,1.输入样例数:2.然后输入一组样例中的行数n:3.前n-1行为定义变量(之间使用空格隔开),只需要map存进去就可以了(这里有覆盖的情况,故使用mp["s&quo ...
- 将mysql数据同步到ES6.4(全量+增量)
下载安装包时注意下载到指定文件夹 这里我放在OPT文件夹下一:安装logstash进入到opt文件夹打开终端 执行以下命令wget -c https://artifacts.elastic.co/do ...