NOIP 模拟 $13\; \text{工业题}$
题解
本题不用什么推式子,找规律(而且也找不出来)
可以将整个式子看成一个 \(n×m\) 矩阵
考虑 \(f_{i,j}\),它向右走一步给出 \(f_{i,j}×a\) 的贡献,向下走一步给出 \(f_{i,j}×b\) 的贡献,那么它到 \(f_{n,m}\) 给出 \(f_{i,j}×a^{m-j}+f_{i,j}×b^{n-i}\) 的贡献
但是,它到终点会有不同的走法,这个用组合数解即可,注意对于 \(f_{i,0}\) 它第一步只能向右走,因为向下的数是确定的。其它同理
预处理出阶乘,逆元和 \(a,b\) 的幂,按上述求解即可
Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=0;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
}
using IO::read;
namespace nanfeng{
#define cmax(x,y) ((x)>(y)?(x):(y))
#define cmin(x,y) ((x)>(y)?(y):(x))
#define FI FILE *IN
#define FO FILE *OUT
typedef long long ll;
static const int MOD=998244353,N=3e5+7;
ll numx[N],numy[N],cma[N],cmb[N],frac[N<<1],inv[N<<1],a,b,ans;
int n,m,mx;
inline void init(int x) {
int tmp=x<<1;
inv[0]=inv[1]=frac[1]=1;
for (ri i(2);i<=tmp;p(i)) frac[i]=frac[i-1]*i%MOD;
for (ri i(2);i<=tmp;p(i)) inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD;
for (ri i(2);i<=tmp;p(i)) (inv[i]*=inv[i-1])%=MOD;
}
inline ll C(int a,int b) {return (!a&&!b)?1:frac[a]*inv[a-b]%MOD*inv[b]%MOD;}
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
read(n),read(m),read(a),read(b);
mx=cmax(n,m);
init(mx);
cma[0]=cmb[0]=1;
a%=MOD,b%=MOD;
for (ri i(1);i<=mx;p(i)) cma[i]=cma[i-1]*a%MOD,cmb[i]=cmb[i-1]*b%MOD;
for (ri i(1);i<=n;p(i)) read(numx[i]),numx[i]%=MOD;
for (ri i(1);i<=m;p(i)) read(numy[i]),numy[i]%=MOD;
for (ri i(1);i<=n;p(i)) (ans+=numx[i]*C(m+n-i-1,m-1)%MOD*cma[m]%MOD*cmb[n-i]%MOD)%=MOD;
for (ri i(1);i<=m;p(i)) (ans+=numy[i]*C(n+m-i-1,n-1)%MOD*cma[m-i]%MOD*cmb[n]%MOD)%=MOD;
printf("%lld\n",ans);
return 0;
}
}
int main() {return nanfeng::main();}
此题较坑,他输入的 \(a,b,f_{i,0},f_{0,i}\) 均为 long long 范围,所以输入完后要先取模。
NOIP 模拟 $13\; \text{工业题}$的更多相关文章
- NOIP 模拟 $13\; \text{玄学题}$
题解 题如其名,是挺玄学的. 我们发现每个值是 \(-1\) 还是 \(1\) 只与它的次数是奇是偶有关,而 \(\sum_j^{j\le m}d(i×j)\) 又只与其中有多少个奇数有关 对于 \( ...
- NOIP 模拟 $13\; \text{卡常题}$
题解 一道环套树的最小点覆盖题目,所谓环套树就是有在 \(n\) 个点 \(n\) 条边的无向联通图中存在一个环 我们可以发现其去掉一条环上的边后就是一棵树 那么对于此题,我们把所有 \(x\) 方点 ...
- NOIP模拟13「工业题·卡常题·玄学题」
T1:工业题 基本思路 这题有一个重要的小转化: 我们将原来的函数看作一个矩阵,\(f(i,j-1)*a\)相当于从\(j-1\)向右走一步并贡献a,\(f(i-1,j)*b\)相当于从\(i-1 ...
- 2021.5.22 noip模拟1
这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...
- 5.23考试总结(NOIP模拟2)
5.23考试总结(NOIP模拟2) 洛谷题单 看第一题第一眼,不好打呀;看第一题样例又一眼,诶,我直接一手小阶乘走人 然后就急忙去干T2T3了 后来考完一看,只有\(T1\)骗到了\(15pts\)[ ...
- [考试总结]noip模拟6
我好菜啊 真上次第二这次倒二... 因为昨天还没有改完所有的题所以就留到今天来写博客了 这次考试总结的教训有很多吧,反正处处体现XIN某人的laji,自己考试的是后本以为一共四个题目,三个题目都没有看 ...
- Noip模拟13 2021.7.13:再刚题,就剁手&&生日祭
T1 工业题 这波行列看反就非常尴尬.....口糊出所有正解想到的唯独行列看反全盘炸列(因为和T1斗智斗勇两个半小时...) 这题就是肯定是个O(n+m)的,那就往哪里想,a,b和前面的系数分开求,前 ...
- NOIP模拟
1.要选一个{1,2,...n}的子集使得假如a和b在所选集合里且(a+b)/2∈{1,2,...n}那么(a+b)/2也在所选集合里 f[i]=2*f[i-1]-f[i-2]+g[i] g[n]:选 ...
- NOIP模拟3
期望得分:30+90+100=220 实际得分:30+0+10=40 T1智障错误:n*m是n行m列,硬是做成了m行n列 T2智障错误:读入三个数写了两个%d T3智障错误:数值相同不代表是同一个数 ...
随机推荐
- centos7 U盘安装及Raid划分的完整流程
目录 一.Centos7的新特性: 二.安装方法与准备工作(U盘镜像) 1. 安装方法介绍 2. Centos iso 常用镜像下载地址: 3. UltraISO制作U盘系统镜像 3.1 准备工作: ...
- OpenMVG 系列 (2):Image 和 Numeric
OpenMVG 的功能模块由若干核心库组成,本文主要介绍 Image 和 Numeric 两个库 1 Image Image 库包含图像容器 Image<T>.图像IO读写函数 Read ...
- 2021最新WordPress安装教程(二):安装PHP和MySQL
这是 2021最新WordPress安装教程系列的第二篇文章,前一篇文章< 2021最新WordPress安装教程(一):Centos7安装Apache>已经完整的介绍了如何在Centos ...
- 重置networker8.0密码
一.重置Networker 8.0密码 1.设置环境变量 新建一个"系统环境变量"名字为"GST_RESET_PW",值为1 2.重启EMC GST Servi ...
- CF1329F题解
能发现: 1.输出序列与掉落顺序没有任何关系(因为单调性不会被改变). 2.输出的序列 \(h_i\) 最多有一组 \(h_i=h_{i+1}\). 对 2 的证明: 当 \(h_{i+1}\) 与 ...
- 论文阅读:LIC-Fusion: LiDAR-Inertial-Camera Odometry
本文提出了一种紧耦合的多传感器(雷达-惯导-相机)融合算法,将IMU测量.稀疏视觉特征.提取的激光点融合.提出的算法在时间和空间上对三个异步传感器进行在线校准,补偿校准发生的变化.贡献在于将检测和追踪 ...
- 禁用ipv6的两种方法
1 通过系统配置文件/etc/sysctl.conf 在sysctl.conf文件中添加行 # 禁用整个系统所有接口的IPv6 net.ipv6.conf.all.disable_ipv6 = 1 # ...
- pycharm基础使用入门
pycharm基础使用入门 输出 print函数 print('hello world') 右键选择run或者右上角的三角形运行,可以运行出结果 "E:\all sorts of learn ...
- javascript学习--(四)面向对象:
一.生成器generator: javascript里的generator函数是用function*定义的, 案例:yield 也会返回 function* foo(x){ yield x+1; yi ...
- python 之爬虫基本流程
python 之爬虫基本流程 一 用户获取网络数据的方式: 方式1:浏览器提交请求--->下载网页代码--->解析成页面 方式2:模拟浏览器发送请求(获取网页代码)->提取有用的数据 ...