引入依赖

        <!-- https://mvnrepository.com/artifact/org.springframework.kafka/spring-kafka -->
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>2.7.1</version>
</dependency>

如果启动报错

Caused by: java.lang.NoClassDefFoundError: org/springframework/core/log/LogAccessor
at org.springframework.kafka.annotation.KafkaListenerAnnotationBeanPostProcessor.<init>(KafkaListenerAnnotationBeanPostProcessor.java:148)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at org.springframework.beans.BeanUtils.instantiateClass(BeanUtils.java:172)
... 19 common frames omitted

就把指定版本去掉

配置文件yml

修改kafka连接地址 其他按需修改

#kafka的topic名称
kafkaTopic: topic-test spring:
kafka:
bootstrap-servers: 192.168.1.12:9092 #kafka连接地址
producer:
acks: 1 #应答级别:多少个分区副本备份完成时向生产者发送ack确认(可选0、1、all/-1)
batch-size: 16384 #批量大小
properties:
linger.ms: 0 # 当生产端积累的消息达到batch-size或接收到消息linger.ms后,生产者就会将消息提交给kafka linger.ms为0表示每接收到一条消息就提交给kafka,这时候batch-size其实就没用了
buffer-memory: 33554432 #生产端缓冲区大小
key-serializer: org.apache.kafka.common.serialization.StringSerializer
value-serializer: org.apache.kafka.common.serialization.StringSerializer
consumer:
group-id: defaultConsumerGroup # 默认的消费组ID
enable-auto-commit: true # 是否自动提交offset
## 当kafka中没有初始offset或offset超出范围时将自动重置offset
## earliest:重置为分区中最小的offset;
## latest:重置为分区中最新的offset(消费分区中新产生的数据);
## none:只要有一个分区不存在已提交的offset,就抛出异常;
auto-commit-interval:
ms: 1000
auto-offset-reset: latest
properties:
session.timeout.ms: 120000 # 消费会话超时时间(超过这个时间consumer没有发送心跳,就会触发rebalance操作)
request.timeout.ms: 180000 # 消费请求超时时间
listener:
missing-topics-fatal: false # 消费监听接口监听的主题不存在时,自动创建,true时表示如果不存在启动报错
flyway:
connect-retries: 0 #重试次数

消费者:

KafkaConsumer.java

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component; /**
* @author yvioo
*/
@Component
public class KafkaConsumer { /**
* 消费监听
* @param record
*/
@KafkaListener(topics = "${kafkaTopic}")
public void onMessage(ConsumerRecord<?, ?> record){
System.out.println("收到消息:topic名称:"+record.topic()+",分区:"+record.partition()+",值:"+record.value());
}
}

生产者

KafkaProducer.java

import org.springframework.beans.factory.annotation.Value;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.support.SendResult;
import org.springframework.util.concurrent.ListenableFutureCallback;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController; import javax.annotation.Resource; /**
* @author 。
*/
@RestController
public class KafkaProducer { @Value("${kafkaTopic}")
private String kafkaTopic; @Resource
private KafkaTemplate<String, Object> kafkaTemplate; /**
* 发送消息
* @param message
*/
@GetMapping("/send")
public void sendMessage1(String message) {
kafkaTemplate.send(kafkaTopic, message);
} /**
* 有发送结果回调
* @param message
*/
@GetMapping("/send/callback")
public void sendMessage3(String message) {
kafkaTemplate.send(kafkaTopic, message).addCallback(new ListenableFutureCallback<SendResult<String, Object>>() {
@Override
public void onFailure(Throwable ex) {
System.out.println("fail:"+ex.getMessage());
} @Override
public void onSuccess(SendResult<String, Object> result) {
System.out.println("success:topic名称:" + result.getRecordMetadata().topic() + ",分区:"
+ result.getRecordMetadata().partition() + ",消息在分区中的标识:" + result.getRecordMetadata().offset());
}
});
}
}

自定义发送的分区器

MyPartitioner.java

import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster; import java.util.Map; /**
* 自定义分区器
* @author 。
*/
public class MyPartitioner implements Partitioner {
@Override
public int partition(String s, Object o, byte[] bytes, Object o1, byte[] bytes1, Cluster cluster) {
//设置分区逻辑
return 0;
} @Override
public void close() { } @Override
public void configure(Map<String, ?> map) { }
}

配置文件增加  后面跟类全路径

partitioner.class: com.example.kafka.config.MyPartitioner  #自定义分区器

自定义生成者拦截器

KafkaProducerInterceptor.java

import org.apache.kafka.clients.producer.ProducerInterceptor;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata; import java.util.Map; /**
* 生产者拦截器
* @author 。
*/
public class KafkaProducerInterceptor implements ProducerInterceptor<String,String> { @Override
public void configure(Map<String, ?> map) { } @Override
public ProducerRecord<String, String> onSend(ProducerRecord<String, String> record) { //这里可以改变发送的数据,比如加个时间戳
return new ProducerRecord<>(record.topic(),record.partition(),record.key(),System.currentTimeMillis()+"_"+record.value());
} @Override
public void onAcknowledgement(RecordMetadata recordMetadata, Exception e) {
if (recordMetadata != null) {
//发送成功
System.out.println("发送成功");
}else {
System.out.println("发送失败");
}
} @Override
public void close() { } }

配置参数说明

enable.auto.commit

指定了消费者是否自动提交偏移量,默认值是true,为了尽量避免重复数据和数据丢失,可以把它设置为false,有自己控制合适提交偏移量,如果设置为true, 可以通过设置 auto.commit.interval.ms属性来控制提交的频率。

详细地来说:

当一个consumer因某种原因退出Group时,进行重新分配partition后,同一group中的另一个consumer在读取该partition时,怎么能够知道上一个consumer该从哪个offset的message读取呢?也是是如何保证同一个group内的consumer不重复消费消息呢?上面说了一次走网络的fetch请求会拉取到一定量的数据,但是这些数据还没有被消息完毕,Consumer就挂掉了,下一次进行数据fetch时,是否会从上次读到的数据开始读取,而导致Consumer消费的数据丢失吗?

为了做到这一点,当使用完poll从本地缓存拉取到数据之后,需要client调用commitSync方法(或者commitAsync方法)去commit 下一次该去读取 哪一个offset的message。

而这个commit方法会通过走网络的commit请求将offset在coordinator中保留,这样就能够保证下一次读取(不论进行了rebalance)时,既不会重复消费消息,也不会遗漏消息。

对于offset的commit,Kafka Consumer Java Client支持两种模式:由KafkaConsumer自动提交,或者是用户通过调用commitSync、commitAsync方法的方式完成offset的提交。

auto.offset.reset

该属性指定了消费者在读取一个没有偏移量后者偏移量无效(消费者长时间失效当前的偏移量已经过时并且被删除了)的分区的情况下,应该作何处理,默认值是latest,也就是从最新记录读取数据(消费者启动之后生成的记录),另一个值是earliest,意思是在偏移量无效的情况下,消费者从起始位置开始读取数据。

session.timeout.ms

该属性指定了当消费者被认为已经挂掉之前可以与服务器断开连接的时间。默认是3s,消费者在3s之内没有再次向服务器发送心跳,那么将会被认为已经死亡。此时,协调器将会出发再均衡,把它的分区分配给其他的消费者,该属性与heartbeat.interval.ms紧密相关,该参数定义了消费者发送心跳的时间间隔,也就是心跳频率,一般要同时修改这两个参数,heartbeat.interval.ms参数值必须要小于session.timeout.ms,一般是session.timeout.ms的三分之一,比如,session.timeout.ms设置成3min,那么heartbeat.interval.ms一般设置成1min,这样,可以更快的检测以及恢复崩溃的节点,不过长时间的轮询或垃圾收集可能导致非预期的再均衡(有一种情况就是网络延迟,本身消费者是没有挂掉的,但是网络延迟造成了心跳超时,这样本不该发生再均衡,但是因为网络原因造成了非预期的再均衡),把该属性的值设置得大一些,可以减少意外的再均衡,不过检测节点崩愤-需要更长的时间。

max.partition.fetch.bytes

该属性指定了服务器从每个分区里返回给消费者的最大字节数。它的默认值是lMB , 也

就是说,kafkaConsumer.poll() 方法从每个分区里返回的记录最多不超max.partitions.fetch.bytes 指定的字节。如果一个主题有20 个分区和5 个消费者,那么每个消费者需要至少4MB 的可用内存来接收记录。在为消费者分配内存时,可以给它们多分配一些,因为如果群组里有消费者发生奔溃,剩下的消费者需要处理更多的分区。max.partition.fetch.bytes 的值必须比broker 能够接收的最大消息的字节数(通过max.message.size 属性配置)大, 否则消费者可能无法读取这些消息,导致消费者一直挂起重试,例如,max.message.size设置为2MB,而该属性设置为1MB,那么当一个生产者可能就会生产一条大小为2MB的消息,那么就会出现问题,消费者能从分区取回的最大消息大小就只有1MB,但是数据量是2MB,所以就会导致消费者一直挂起重试。

在设置该属性时,另一个需要考虑的因素是消费者处理数据的时间。消费者需要频繁调用poll()方法

来避免会话过期和发生分区再均衡,如果单次调用poll()返回的数据太多,消费者需要更多的时间来处理,可能无怯及时进行下一个轮询来避免会话过期。如果出现这种情况, 可以把max.partitioin.fetch.bytes 值改小,或者延长会话过期时间。

fetch.min.bytes

消费者从服务器获取记录的最小字节数,broker收到消费者拉取数据的请求的时候,如果可用数据量小于设置的值,那么broker将会等待有足够可用的数据的时候才返回给消费者,这样可以降低消费者和broker的工作负载。

因为当主题不是很活跃的情况下,就不需要来来回回的处理消息,如果没有很多可用数据,但消费者的CPU 使用率却很高,那么就需要把该属性的值设得比默认值大。如果消费者的数量比较多,把该属性的值设置得大一点可以降低broker 的工作负载。

fetch.max.wait.ms

fetch.min.bytes设置了broker返回给消费者最小的数据量,而fetch.max.wait.ms设置的则是broker的等待时间,两个属性只要满足了任何一条,broker都会将数据返回给消费者,也就是说举个例子,fetch.min.bytes设置成1MB,fetch.max.wait.ms设置成1000ms,那么如果在1000ms时间内,如果数据量达到了1MB,broker将会把数据返回给消费者;如果已经过了1000ms,但是数据量还没有达到1MB,那么broker仍然会把当前积累的所有数据返回给消费者。

max.poll.records

控制单次调用call方法能够返回的记录数量,帮助控制在轮询里需要处理的数据量。

receive.buffer.bytes + send.buffer.bytes

socket 在读写数据时用到的TCP 缓冲区也可以设置大小。如果它们被设为-1 ,就使用操作系统的默认值。如果生产者或消费者与broker 处于不同的数据中心内,可以适当增大这些值,因为跨数据中心的网络一般都有比较高的延迟和比较低的带宽。

partition.assignment.strategy

分区分配策略,kafka有两个默认策略:

  • Range:该策略会把主题的若干个连续的分区分配给消费者
  • Robin:该策略把主题的所有分区逐个分配给消费者

分区策略默认是:org.apache.kafka.clients.consumer.RangeAssignor=>Range策略

org.apache.kafka.clients.consumer.RoundRobinAssignor=>Robin策略

SpringBoot整合kafka的简单应用及配置说明的更多相关文章

  1. SpringBoot整合Kafka和Storm

    前言 本篇文章主要介绍的是SpringBoot整合kafka和storm以及在这过程遇到的一些问题和解决方案. kafka和storm的相关知识 如果你对kafka和storm熟悉的话,这一段可以直接 ...

  2. SpringBoot系列八:SpringBoot整合消息服务(SpringBoot 整合 ActiveMQ、SpringBoot 整合 RabbitMQ、SpringBoot 整合 Kafka)

    声明:本文来源于MLDN培训视频的课堂笔记,写在这里只是为了方便查阅. 1.概念:SpringBoot 整合消息服务 2.具体内容 对于异步消息组件在实际的应用之中会有两类: · JMS:代表作就是 ...

  3. springBoot整合MyBatise及简单应用

    springBoot整合MyBatise及简单应用 我采用的是 工具IDEA 框架是springBoot+maven+Mybatise 第一步: pom.xml 引入相关jar包 <?xml v ...

  4. 从无到有Springboot整合Spring-data-jpa实现简单应用

    本文介绍Springboot整合Spring-data-jpa实现简单应用 Spring-data-jpa是什么?这不由得我们思考一番,其实通俗来说Spring-data-jpa默认使用hiberna ...

  5. Springboot整合ElasticSearch进行简单的测试及用Kibana进行查看

    一.前言 搜索引擎还是在电商项目.百度.还有技术博客中广泛应用,使用最多的还是ElasticSearch,Solr在大数据量下检索性能不如ElasticSearch.今天和大家一起搭建一下,小编是看完 ...

  6. springboot整合redis(简单整理)

    Redis安装与开启 我这里是在windows上练习,所以这里的安装是指在windows上的安装,操作非常简单,点击https://github.com/MicrosoftArchive/redis/ ...

  7. Kafka:Springboot整合Kafka消息队列

    本文主要分享下Spring Boot和Spring Kafka如何配置整合,实现发送和接收来自Spring Kafka的消息. 项目结构 pom依赖包 <?xml version="1 ...

  8. MongoDB系列:三、springboot整合mongoDB的简单demo

    在上篇 MongoDB常用操作练习 中,我们在命令提示符窗口使用简单的mongdb的方法操作数据库,实现增删改查及其他的功能.在本篇中,我们将mongodb与spring boot进行整合,也就是在j ...

  9. springboot整合kafka应用

    1.kafka在消息传递的使用非常普遍,相对于activemq来说kafka的分布式管理和使用更加灵活. 2.activemq的搭建和使用可以参考: activemq搭建和springmvc的整合:h ...

随机推荐

  1. CF605E Intergalaxy Trips

    CF605E Intergalaxy Trips 考虑你是不知道后来的边的出现情况的,所以可以这样做:每天你都选择一些点进行观察,知道某天往这些点里面的某条边可用了,你就往这条边走.这样贪心总是对的. ...

  2. pcm.x代码分析

    简介 运行说明 pcm 监控结果可以分为核心.socket 和系统三部分.在核心监控部分,结果包括如下内容: • EXEC • IPC:每 CPU 周期指令数 • FREQ:普通CPU频率系数 • A ...

  3. SQL-关联表查询(连表查询)

    0.例如:select * from T1,T2     where T1.a=T2.a 1.连表查询 <=> join(inner join)内连接查询 数据源: Persion表:  ...

  4. SQL-增、删、改操作

    #查看表 select * from `竟企区域数据分析` #在表第一列新增名为"年月"的列alter table `竟企区域数据分析` add column 年月 varchar ...

  5. Python中类的各式方法介绍

    本文类的方法介绍包括类方法.属性方法.静态方法.修改属性方法等内置装饰器装饰的方法,以及类的一些特殊成员方法 1. 类的特殊成员方法 1.1 构造方法 # -*- coding:utf-8 -*- # ...

  6. Python添加模块路径

    1.用函数临时添加 1 import sys #导入sys模块 2 3 4 sys.path.append(r'/tmp/test') #要用绝对路径 5 print(sys.path) #查看模块路 ...

  7. 用JS实现方块碰撞

    首先我们应用上次的内容--方块拖拽,利用方块拖拽来让两个方块进行碰撞. 我们可以先定义两个正方形方块,红色的div1,绿色的div2,我们来实现当div1碰撞div2时div2的颜色变为黄色 HTML ...

  8. 巩固javaweb第十六天

    巩固内容: 下拉框 在注册功能中,地区的选择使用了下拉框,可以从地区选项中选择一个地区.在这个 例子中,只允许选择一个,而在有些情况下,下拉框可以进行多选.所以,从功能上来说, 下拉框具有单选按钮和复 ...

  9. cephfs文件系统场景

    创建cephfs文件系统: [cephfsd@ceph-admin ceph]$ cd /etc/ceph [cephfsd@ceph-admin ceph]$ ceph fs ls No files ...

  10. Gitlab安装操作说明书

    一.Gitlab安装操作步骤 登录官方网站https://about.gitlab.com/downloads/根据你所需要的系统版本,作者使用的是centos6, 检查您的服务器是否符合硬件要求.g ...