Network

Description

Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs). 
Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem — not each hub can be connected to any other one because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections. 
You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied. 

Input

The first line of the input contains two integer numbers: N - the number of hubs in the network (2 <= N <= 1000) and M - the number of possible hub connections (1 <= M <= 15000). All hubs are numbered from 1 to N. The following M lines contain information about possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There will be no more than one way to connect two hubs. A hub cannot be connected to itself. There will always be at least one way to connect all hubs.

Output

Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding cable. Separate numbers by spaces and/or line breaks.

Sample Input

4 6
1 2 1
1 3 1
1 4 2
2 3 1
3 4 1
2 4 1

Sample Output

1
3
1 2
1 3
3 4

题解:原题目数据输出有问题,该题就是典型的Krusal算法,这里使用并查集判断有没有环形成。

#include <iostream>
#include<algorithm>
#include<stdio.h>
#include<cstring>
using namespace std;
typedef long long ll;
const int maxn=20000;
int pre[maxn],height[maxn];
void init_set(int n){
for (int i = 1; i <= n; i++){
pre[i]=i;
}
memset(height,0,sizeof(height));
} int find_set(int x){
return x==pre[x]?x:pre[x]=find_set(pre[x]);
}
void union_set(int x,int y){
x= find_set(x);
y= find_set(y);
if(x==y)return;
if(height[x]==height[y]){
height[x]=height[x]+1;
pre[y]=x;
}else{
if(height[x]<height[y]) pre[x]=y;
else{
pre[y]=x;
}
}
} struct edge{
int u,v,w;
bool operator <(const edge& a)const{
return w<a.w;
}
};
int main(){
int n,m;
while(~scanf("%d%d",&n,&m)){
init_set(n);
edge* edges = new edge[m+1];
bool *record=new bool[m+1];
// memset(record,false,sizeof(record));
for (int i = 1; i <=m; i++){
record[i]=false;
scanf("%d%d%d",&edges[i].u,&edges[i].v,&edges[i].w);
}
sort(edges+1,edges+m+1);
int maxcable=edges[0].w,sums=0,num=0;
int u,v;
for (int i = 1; i <=m; i++){
u=edges[i].u;
v=edges[i].v;
if(find_set(u)!=find_set(v)){
union_set(u,v);
num++;
record[i]=true;
}
if(num>=n-1){
maxcable=edges[i].w;
break;
}
}
cout<<maxcable<<endl;
cout<<n-1<<endl;
for (int i = 1; i<=m; i++){
if(record[i]){
cout<<edges[i].u<<" "<<edges[i].v<<endl;
}
}
}
}

POJ1861 Network (Kruskal算法 +并查集)的更多相关文章

  1. 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集

    最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...

  2. 模板——最小生成树kruskal算法+并查集数据结构

    并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...

  3. 图论 Kruskal算法 并查集

    #include<iostream> #include<cstring> #include<string> #include<cstdio> #incl ...

  4. poj1251 Jungle Roads Kruskal算法+并查集

    时限: 1000MS   内存限制: 10000K 提交总数: 37001   接受: 17398 描述 热带岛屿拉格里山的首长有个问题.几年前,大量的外援花在了村庄之间的额外道路上.但是丛林不断地超 ...

  5. 货车运输-洛谷-1967-LCA+最大生成树(kruskal(并查集))

    传送门 一道:LCA+最大生成树 个人认为把这两个的板子写好(并熟练掌握了之后)就没什么难的 (但我还是de了好久bug)qwq 最大生成树:其实就是最小生成树的变形 我用的是kruskal (个人觉 ...

  6. BZOJ 2342: [Shoi2011]双倍回文 马拉车算法/并查集

    2342: [Shoi2011]双倍回文 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1123  Solved: 408 题目连接 http://w ...

  7. 近期公共祖先(LCA)——离线Tarjan算法+并查集优化

    一. 离线Tarjan算法 LCA问题(lowest common ancestors):在一个有根树T中.两个节点和 e&sig=3136f1d5fcf75709d9ac882bd8cfe0 ...

  8. POJ 1861 Network (Kruskal算法+输出的最小生成树里最长的边==最后加入生成树的边权 *【模板】)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14021   Accepted: 5484   Specia ...

  9. UVALive 3027 Corporative Network 带权并查集

                         Corporative Network A very big corporation is developing its corporative networ ...

随机推荐

  1. 就这?分布式 ID 发号器实战

    分布式 ID 需要满足的条件: 全局唯一:这是最基本的要求,必须保证 ID 是全局唯一的. 高性能:低延时,不能因为一个小小的 ID 生成,影响整个业务响应速度. 高可用:无限接近于100%的可用性. ...

  2. 【原创】深入分析Ubuntu本地提权漏洞CVE-2017-16995

    *本文首发阿里云先知安全技术社区,原文链接https://xz.aliyun.com/t/2212 前言: 2018年3月中旬,Twitter 用户 @Vitaly Nikolenko 发布消息,称 ...

  3. spring-data-jdbc的基础使用(一)

    前言 很多人知道Mybatis,知道Jpa,但是对spring-data-jdbc可能了解的少之又少.注意我们这里说的是data-jdbc,而不是普通的jdbc.它拥有了类似jpa的一些特性,比如能够 ...

  4. weblogicSSRF漏洞复现

    一.关于SSRF 1.1 简介: SSRF(Server-Side Request Forgery)服务端请求伪造,是一种由攻击者构造形成由服务器端发起请求的一个漏洞,一般情况下,SSRF 攻击的目标 ...

  5. Linux下的段错误(Segmentation fault)

    Linux下的段错误(Segmentation fault) 段错误是指:访问了系统分配给程序的内存空间之外起的内存空间,比如: 访问不存在的地址 访问受系统保护的地址 访问了只读内存地址 内存访问越 ...

  6. STM32—SysTick系统定时器

    SysTick是STM32中的系统定时器,利用SysTick可以实现精确的延时. SysTick-系统定时器 属于 CM3 内核中的一个外设,内嵌在 NVIC 中.系统定时器是一个 24bit 的向下 ...

  7. Centos7上yum安装redis

    下载tar包 wget http://download.redis.io/releases/redis-6.0.5.tar.gz 解压tar包 tar -zxvf redis-6.0.5.tar.gz ...

  8. javascript,html,正则表达式,邮箱密码验证

    <!DOCTYPE html> <html>     <head>         <meta charset="utf-8">   ...

  9. SpringBoot整合mybatis快速入门

    一.创建一个SpringBoot项目                 二.引入相关依赖 <!--web核心依赖--> <dependency> <groupId>o ...

  10. wpf 中的DataTemplate 绑定控件

    <ResourceDictionary xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" x ...