Python(包括其包Numpy)中包含了了许多概率算法,包括基础的随机采样以及许多经典的概率分布生成。我们这个系列介绍几个在机器学习中常用的概率函数。先来看最基础的功能——随机采样。

1. random.choice

如果我们只需要从序列里采一个样本(所有样本等概率被采),只需要使用random.choice即可:

import random
res1 = random.choice([0, 1, 2, 3, 4])
print(res1) # 3

2. random.choices(有放回)

当然,很多时候我们不只需要采一个数,而且我们需要设定序列中每一项被采的概率不同。此时我们可以采用random.random.choices函数, 该函数用于有放回的(即一个数据项可以被重复采多次)对一个序列进行采样。其函数原型如下:


random.choices(population, weights=None, *, cum_weights=None, k=1)

population: 欲采样的序列

weights: 每个样本被赋予的权重(又称相对权重),决定每个样本被采的概率,如[10, 0, 30, 60, 0]

cum_weights: 累积权重,相对权重[10, 0, 30, 60, 0]相当于累积权重[10, 10, 40, 100, 100]


我们从[0, 1, 2, 3, 4]中按照相对权重采样3个样本如下:

res2 = random.choices([0, 1, 2, 3, 4], weights=[10, 0, 30, 60, 0], k=3)
# 注意population不是关键字参数,在函数调用时不能写成population=[0,1,2,3,4]来传参
# 关于关键字参数和位置参数,可以参看我的博客《Python技法2:函数参数的进阶用法》https://www.cnblogs.com/orion-orion/p/15647408.html
print(res2) # [3, 3, 2]

[0, 1, 2, 3, 4]中按照累积权重采样3和样本如下:

res3 = random.choices([0, 1, 2, 3, 4], cum_weights=[10, 10, 40, 100, 100], k=3)
print(res3) # [0, 3, 3]

注意,相对权重weights和累计权重cum_weights不能同时传入,否则会报TypeError异常'Cannot specify both weights and cumulative weights'

3. numpy.sample(无放回)

random.sample是无放回,如果我们需要无放回采样(即每一项只能采一次),那我们需要使用random.sample。需要注意的是,如果使用该函数,将无法定义样本权重。该函数原型如下:


random.sample(population, k, *, counts=None)¶

population: 欲采样的序列

k: 采样元素个数

counts: 用于population是可重复集合的情况,定义集合元素的重复次数。sample(['red', 'blue'], counts=[4, 2], k=5)等价于sample(['red', 'red', 'red', 'red', 'blue', 'blue'], k=5)


我们无放回地对序列[0, 1, 2, 3, 4]采样3次如下:

res3 = random.sample([0, 1, 2, 3, 4], k=3)
print(res3) # [3, 2, 1]

无放回地对可重复集合[0, 1, 1, 2, 2, 3, 3, 4]采样3次如下:

res4 = random.sample([0, 1, 2, 3, 4], k=3, counts=[1, 2, 2, 2, 1])
print(res4) # [3, 2, 2]

如果counts长度和population序列长度不一致,会抛出异常ValueError:"The number of counts does not match the population"

4.rng.choicesrng.sample

还有一种有放回采样实现方法是我在论文[1]的代码[2]中学习到的。即先定义一个随机数生成器,再调用随机数生成器的choices方法或sample方法,其使用方法和random.choice/random.sample函数相同。

rng_seed = 1234
rng = random.Random(rng_seed)
res5 = rng.choices(
population=[0,1,2,3,4],
weights=[0.1, 0, 0.3, 0.6, 0],
k=3,
)
print(res5) # [3, 3, 0] res6 = rng.sample(
population=[0, 1, 2, 3, 4],
k=3,
)
print(res6) # [4, 0, 2]

这两个函数在论文[1]的实现代码[2]中用来随机选择任务节点client

 def sample_clients(self):
"""
sample a list of clients without repetition """
rng_seed = (seed if (seed is not None and seed >= 0) else int(time.time()))
self.rng = random.Random(rng_seed) if self.sample_with_replacement:
self.sampled_clients = \
self.rng.choices(
population=self.clients,
weights=self.clients_weights,
k=self.n_clients_per_round,
)
else:
self.sampled_clients = self.rng.sample(self.clients, k=self.n_clients_per_round)

5. numpy.random.choices

从序列中按照权重分布采样也可以采用numpy.random.choice实现。其函数原型如下:

random.choice(a, size=None, replace=True, p=None)

a: 1-D array-like or int   如果是1-D array-like,那么样本会从其元素中抽取。如果是int,那么样本会从np.arange(a)中抽取;

size: int or tuple of ints, optional   为输出形状大小,如果给定形状为\((m, n, k)\),那么\(m\times n\times k\)的样本会从中抽取。默认为None,即返回一个单一标量。

replace: boolean, optional   表示采样是又放回的还是无放回的。若replace=True,则为又放回采样(一个值可以被采多次),否则是无放回的(一个值只能被采一次)。

p: 1-D array-like, optional   表示a中每一项被采的概率。如果没有给定,则我们假定a中各项被采的概率服从均匀分布(即每一项被采的概率相同)。

[0,1,2,3,4,5]中重复/不重复采样3次如下:

import numpy as np
res1 = np.random.choice(5, 3, replace=True)
print(res1) # [1 1 4] res2 = np.random.choice(5, 3, replace=False)
print(res2) # [2 1 4]

同样是[0,1,2,3,4,5]中重复/不重复采样3次,现在来看我们为每个样本设定不同概率的情况:

res3 = np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
print(res3) # [2 3 3] res4 = np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
print(res4) # [3 2 0]

参考文献

Python中的随机采样和概率分布(一)的更多相关文章

  1. Python中的随机采样和概率分布(二)

    在上一篇博文<Python中的随机采样和概率分布(一)>(链接:https://www.cnblogs.com/orion-orion/p/15647408.html)中,我们介绍了Pyt ...

  2. python中的随机模块random

    random模块是 python 中为随机数所使用的模块 ```import random # 随机生成0-1范围内的随机浮点数i = random.random()print(i) # 随机生成范围 ...

  3. 在python中实现随机选择

    想从一个序列中随机抽取若干元素,或者想生成几个随机数. random 模块有大量的函数用来产生随机数和随机选择元素.比如,要想从一个序列中随机的抽取一个元素,可以使用random.choice() : ...

  4. python中生成随机整数(random模块)

    1.从一个序列中随机选取一个元素返回:   random.choice(sep)    2.用于将一个列表中的元素打乱   random.shuffle(sep)    3.在sep列表中随机选取k个 ...

  5. 关于python中的随机种子——random_state

    random_state是一个随机种子,是在任意带有随机性的类或函数里作为参数来控制随机模式.当random_state取某一个值时,也就确定了一种规则. random_state可以用于很多函数,我 ...

  6. Python中随机森林的实现与解释

    使用像Scikit-Learn这样的库,现在很容易在Python中实现数百种机器学习算法.这很容易,我们通常不需要任何关于模型如何工作的潜在知识来使用它.虽然不需要了解所有细节,但了解机器学习模型是如 ...

  7. 如何在Python中实现这五类强大的概率分布

    R编程语言已经成为统计分析中的事实标准.但在这篇文章中,我将告诉你在Python中实现统计学概念会是如此容易.我要使用Python实现一些离散和连续的概率分布.虽然我不会讨论这些分布的数学细节,但我会 ...

  8. 如何在Python中从零开始实现随机森林

    欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 决策树可能会受到高度变异的影响,使得结果对所使用的特定测试数据而言变得脆弱. 根据您的测试数据样本构建多个模型(称为套袋)可以减少这种差异,但是 ...

  9. H2O中的随机森林算法介绍及其项目实战(python实现)

    H2O中的随机森林算法介绍及其项目实战(python实现) 包的引入:from h2o.estimators.random_forest import H2ORandomForestEstimator ...

随机推荐

  1. C++STL(set……)

    set 底层实现是用红黑树. set 建立 set<int> s; // 不可重,默认升序 set<int,less> s; // 不可重,升序 set<int,grea ...

  2. 按之字形顺序打印二叉树 牛客网 剑指Offer

    按之字形顺序打印二叉树 牛客网 剑指Offer 题目描述 请实现一个函数按照之字形打印二叉树,即第一行按照从左到右的顺序打印,第二层按照从右至左的顺序打印,第三行按照从左到右的顺序打印,其他行以此类推 ...

  3. 斐波那契数列 牛客网 剑指Offer

    斐波那契数列 牛客网 剑指Offer 题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 class Solution: ...

  4. Python hashlib Unicode-objects must be encoded before hashing

    Python2中没有这个问题 python3中 hashlib.md5(data)函数中data 参数的类型应该是bytes hash前必须把数据转换成bytes类型 Python 2.7.12 (d ...

  5. cf 11B Jumping Jack(贪心,数学证明一下,,)

    题意: 给一个数X. 起始点为坐标0.第1步跳1格,第2步跳2格,第3步跳3格,.....以此类推. 每次可以向左跳或向右跳. 问最少跳几步可以到坐标X. 思路: 假设X是正数. 最快逼近X的方法是不 ...

  6. 数字孪生 3D 科技馆的科学传播新模式

    前言 科技馆是一种参与型体验型的博物馆,以传播科学知识.培养公众的科学创新技术为宗旨,并以其生动的展现方式得到公众的广泛欢迎.一直以来,我国科技馆的发展受到各种因素的制约和影响,发展缓慢.如今在我国经 ...

  7. 【Docker】Maven打包SpringBoot项目成Docker镜像并上传到Harbor仓库(Eclipse、STS、IDEA、Maven通用)

    写在前面 最近,在研究如何使用Maven将SpringBoot项目打包成Docker镜像并发布到Harbor仓库,网上翻阅了很多博客和资料,发现大部分都是在复制粘贴别人的东西,没有经过实践的检验,根本 ...

  8. prometheus(6)之常用服务监控

    监控常用服务 1.tomcat 2.redis 3.mysql 4.nginx 5.mongodb prometheus监控tomcat tomcat_exporter地址 https://githu ...

  9. javascript 深拷贝与浅拷贝

    javascript 深拷贝与浅拷贝 深拷贝与浅拷贝 赋值和深/浅拷贝的区别 浅拷贝的实现方式 1.Object.assign() 2.函数库lodash的_.clone方法 3.展开运算符... 4 ...

  10. Redis集群与高可用

    Redis集群 redis cluster 是redis官方提供的分布式解决方案,在3.0版本后推出的,有效地解决了redis分布式的需求,当一个redis节点挂了可以快速的切换到另一个节点.当遇到单 ...