大鸽子 llmmkk 正在补8.3号咕掉的题

时隔两个月,再看到这道题,我又是一脸懵,这种思维的培养太重要了


链接:

P4587


题意:

给出 \(n\) 个点的序列,\(m\) 次询问区间神秘数

神秘数定义为最小的不能被序列的子集的和表示的正整数。

如序列 \(\{1,1,4,1,13\}\) 的神秘数是 \(8\)。


分析:

这题重点在神秘数的求法,先考虑暴力求法,由于定义是序列子集,那么首先考虑将该区间排序,可能会得到一些有用的性质。

假设当前能够表示的区间是 \([1,sum]\),对于当前的数 \(x\) 。

  1. \(x>sum+1\),那么答案就是 \(sum+1\)。
  2. \(x\leq sum+1\),那么能够表示的区间将会变成 \([1,sum+x]\),继续考虑下一个数。

仔细想一下会发现这个暴力很对。

然后考虑优化,暴力是一个一个判断并处理的,我们考虑一次性处理多个 \(x\)。于是正解就是:

假设当前能够表示的区间是 \([1,sum]\),记区间内所有小于等于 \(sum\) 的 \(x\) 之和为 \(res\)。

  1. \(res+1>sum\),那么将 \(sum\) 更新为 \(res+1\)
  2. \(res+1\leq sum\) ,那么答案就是 \(sum+1\)

仔细想想这个东西,发现它成功做到了上面的优化,同时它的正确性也很对。因为这个做法实在太难以言传了,所以可以再参考一下这篇

时间复杂度分析:假如当前的神秘数为 \(s1\),下一个神秘数是 \(s2\),再下一个是 \(s3\),那么从 \(s2\) 到 \(s3\) 相比从 \(s1\) 到 \(s2\) 多出来的 \(x\) 一定是大于 \(s1\) 的,所以 \(ans\) 是成倍增长的,于是这个做法的复杂度就是 \(O(\log\sum a)\)


算法:

于是我们需要一个东西能够维护区间内某个值域的数值之和。可以在每个位置维护一个从 \(1\) 到当前位置的权值线段树,拉到主席树上,然后两个区间查询相减就可以做到。

主席树 \(O(n\log n)\),上面的算法 \(O(\log\sum a)\),所以总复杂度 \(O(n\log n\log\sum a)\)。


代码:
#include <bits/stdc++.h>
using namespace std;
#define in read()
inline int read(){
int p=0,f=1;
char c=getchar();
while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
while(isdigit(c)){p=p*10+c-'0';c=getchar();}
return p*f;
}
const int N=1e5+5;
int n,m;
int a[N],q[N],qn,w[N];
int bin(int key){
int l=1,r=qn,mid;
while(l<r){
mid=(l+r+1)>>1;
if(q[mid]<=key)l=mid;
else r=mid-1;
}
return l;
}
int rt[N];
int tot,sum[N<<5],lc[N<<5],rc[N<<5];
int newnode(){
++tot;
sum[tot]=lc[tot]=rc[tot]=0;
return tot;
}
void pushup(int p){
sum[p]=sum[lc[p]]+sum[rc[p]];
}
int fi_built(int l,int r){
int p=newnode();
if(l==r){return p;}
int mid=(l+r)>>1;
lc[p]=fi_built(l,mid);
rc[p]=fi_built(mid+1,r);
return p;
}
int built(int l,int r,int pre,int x,int d){
int now=newnode(),mid=(l+r)>>1;
sum[now]=sum[pre],lc[now]=lc[pre],rc[now]=rc[pre];
if(l==r){sum[now]+=d*q[l];return now;}
if(x<=mid)lc[now]=built(l,mid,lc[now],x,d);
else rc[now]=built(mid+1,r,rc[now],x,d);
pushup(now);
return now;
}
int query(int l,int r,int p,int ql,int qr){
if(ql>qr)return 0;
if(l>=ql&&r<=qr)return sum[p];
int mid=(l+r)>>1,res=0;
if(ql<=mid)res+=query(l,mid,lc[p],ql,qr);
if(qr>mid)res+=query(mid+1,r,rc[p],ql,qr);
return res;
}
signed main(){
n=in;
for(int i=1;i<=n;i++)
a[i]=in,q[i]=a[i];
sort(q+1,q+1+n);
qn=unique(q+1,q+1+n)-(q+1);
rt[0]=fi_built(1,n);
for(int i=1;i<=n;i++)
rt[i]=built(1,n,rt[i-1],bin(a[i]),1);
m=in;
for(int i=1;i<=m;i++){
int l=in,r=in;
int ans=1,tans=bin(ans);
int que=query(1,n,rt[r],1,tans)-query(1,n,rt[l-1],1,tans);
while(que+1>ans){
ans=que+1;
tans=bin(ans);
que=query(1,n,rt[r],1,tans)-query(1,n,rt[l-1],1,tans);
}
cout<<ans<<'\n';
}
return 0;
}

洛谷 P4587 [FJOI2016]神秘数的更多相关文章

  1. 洛谷P4587 [FJOI2016]神秘数(主席树)

    题面 洛谷 题解 考虑暴力,对于询问中的一段区间\([l,r]\),我们先将其中的数升序排序,假设当前可以表示出\([1,k]\)目前处理\(a_i\),假如\(a_i>k+1\),则答案就是\ ...

  2. Luogu P4587 [FJOI2016]神秘数

    一道好冷门的好题啊,算是对于一个小结论和数据结构的一点考验吧 首先看完题目我们发现要从这个神秘数的性质入手,我们观察or手玩可得: 如果有\(x\)个\(1\),那么\([1,x]\)都是可以表示出来 ...

  3. P4587 [FJOI2016]神秘数(主席树)

    题意:给出1e5个数 查询l,r区间内第一个不能被表示的数 比如1,2,4可以用子集的和表示出[1,7] 所以第一个不能被表示的是8 题解:先考虑暴力的做法 把这个区间内的数字按从小到大排序后 从前往 ...

  4. 220722 T4 求和 /P4587 [FJOI2016]神秘数 (主席树)

    好久没打主席树了,都忘了怎么用了...... 假设我们选了一些数能构成[0,x]范围内的所有值,下一个要加的数是k(k<=x+1),那么可以取到[0,x+k]内的所有取值,所以有一种做法: 对于 ...

  5. LUOGU P4587 [FJOI2016]神秘数(主席树)

    传送门 解题思路 如果区间内没有\(1\),那么答案就为\(1\),从这一点继续归纳.如果区间内有\(x\)个\(1\),设区间内\([2,x+1]\)的和为\(sum\),如果\(sum=0\),那 ...

  6. 【BZOJ4408】[FJOI2016]神秘数(主席树)

    [BZOJ4408][FJOI2016]神秘数(主席树) 题面 BZOJ 洛谷 题解 考虑只有一次询问. 我们把所有数排个序,假设当前可以表示出的最大数是\(x\). 起始\(x=0\). 依次考虑接 ...

  7. 【LG4587】[FJOI2016]神秘数

    [LG4587][FJOI2016]神秘数 题面 洛谷 题解 首先我们想一想暴力怎么做 对于一段区间\([l,r]\) 我们先将它之间的数升序排序 从左往右扫, 设当前我们可以表示出的数为\([1,x ...

  8. (bzoj4408)[FJOI2016]神秘数(可持久化线段树)

    (bzoj4408)[FJOI2016]神秘数(可持久化线段树) bzoj luogu 对于一个区间的数,排序之后从左到右每一个数扫 如果扫到某个数a时已经证明了前面的数能表示[1,x],那么分情况: ...

  9. BZOJ4299 & CC FRBSUM:ForbiddenSum & BZOJ4408 & 洛谷4587 & LOJ2174:[FJOI2016]神秘数——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4299 https://www.lydsy.com/JudgeOnline/problem.php? ...

随机推荐

  1. OpenGL渲染管道,Shader,VAO&VBO&EBO

    OpenGL渲染管线 (也就是)OpenGL渲染一帧图形的流程 以下列举最简单的,渲染一个三角形的流程,你可以将它视为 精简版OpenGL渲染管线 更复杂的流程也仅仅就是:在此基础上的各个流程中 添加 ...

  2. PHP设计模式之模板方法模式

    模板方法模式,也是我们经常会在不经意间有会用到的模式之一.这个模式是对继承的最好诠释.当子类中有重复的动作时,将他们提取出来,放在父类中进行统一的处理,这就是模板方法模式的最简单通俗的解释.就像我们平 ...

  3. redis 设置密码 laravel框架配置redis

    * 参考资料 redis文档             http://www.redis.cn/documentation.html,  http://redisdoc.com/index.html r ...

  4. Jemter请求乱码解决方案

    1:jemeter查看结果树乱码 (1)在jmeter的bin目录下找到jmeter.properties这个文件,添加上 sampleresult.default.encoding=utf-8 (2 ...

  5. T183637-变异距离(2021 CoE III C)【单调栈】

    正题 题目链接:https://www.luogu.com.cn/problem/T183637 题目大意 给出\(n\)个二元组\((x_i,y_i)\),求最大的 \[|x_i-x_j|\time ...

  6. asp.net core使用identity+jwt保护你的webapi(一)——identity基础配置

    前言 用户模块几乎是每个系统必备的基础功能,如果每次开发一个新项目时都要做个用户模块,确实非常无聊.好在asp.net core给我们提供了Identity,使用起来也是比较方便,如果对用户这块需求不 ...

  7. 【k8s】使用k8s部署一个简单的nginx服务

    名词解释 Namespace 表示命名空间 Deployment 表示pod发布 Service 表示多个pod做为一组的集合对外通过服务的表示 kubectl 是k8s的命令行操作命令,可以创建和更 ...

  8. Serverless:这真的是未来吗?(一)

    原文 | https://www.pulumi.com/blog/is_serverless_the_future_part_1/ 作者 | Lee Briggs & Piers Karsen ...

  9. Rclone使用教程 - 挂载Onedrive和谷歌网盘

    1. 介绍 Rclone 是一个用于多个云平台之间同步文件和目录的命令行工具,其支持多种运营商网盘. 官网网址:https://rclone.org 开源地址:https://github.com/n ...

  10. 洛谷4631 [APIO2018] Circle selection 选圆圈 (KD树)

    qwq纪念AC450 一开始想这个题想复杂了. 首先,正解的做法是比较麻烦的. qwqq 那么就不如来一点暴力的东西,看到平面上点的距离的题,不难想到\(KD-Tree\) 我们用类似平面最近点对那个 ...