解析

看到这道题时,有没有想到搜索?然后就是一通码......然后过了。

但是,真的要用搜索吗?

我们可以观察一下。对于n进制中的数ii,如果ii加上某一个数jj会变成两位数,那么可以得到如下不等式:

i+j>n−1⇒j>n−1−ii+j>n−1⇒j>n−1−i

而满足要求的jj的个数有n−1−(n−1−i)=in−1−(n−1−i)=i个。由此我们可以得到结论,一个字母的值就是这个字母对应的行中两位数的个数。我们所需要做的只是验证是否正确。那么怎样验证呢?最直接的办法是直接往里面代,但能否用另外的方法将每个字母的值算出呢?

这个比较难想。对于一个数ii,如果想要j+kj+k的个位数为ii,必须满足i<k<ni<k<n。那么,假设满足条件的kk有a[i]a[i]个,ii的值就是n−1−a[i]n−1−a[i]。a[i]a[i]只用求一个字母在两位数的个位上出现的次数即可。

另外,如果一个数在同一行中出现了两次,显然也是不对的,直接结束即可。

在下面的代码中,因为行数是nn,所以其实是n−1n−1进制的加法。

#include<bits/stdc++.h>

#define fu(i,q,w) for(register int i=q;i<=w;i++)
#define fd(i,q,w) for(register int i=q;i>=w;i--)
using namespace std;
typedef long long ll;
inline int read(){
int ret=0,f=1;char c;
while((c=getchar())<'0'||c>'9')if(c=='-')f=-1;
while(c>='0'&&c<='9')ret=ret*10+(c-'0'),c=getchar();
return ret*f;
}
char word[10];//记录字母
char check[10];//检查重复
string numx,numy;//储存输入数据、检查重复
map<char,int> two;//一行中两位数个数
map<char,int> tone;//存字母在两位数个位出现几次
int n;
void in(){
n=read();
cin>>numx;//"+"特判输入
fu(i,1,n-1){cin>>numx,word[i]=numx[0];}// 第一行存表头的每个字母
fu(i,1,n-1)//从第二行开始
fu(j,1,n){cin>>numx;

if(j!=1&&j!=2)//表头不算
if(numx==numy){printf("ERROR!");exit(0);}//发现重复输入一定不对
numy=numx; //前后比,不要全行比
if(numx.size()==2){//统计两位数个数
two[word[i]]++;tone[numx[1]]++;
}
}
}
void solve(){
fu(i,1,n-1)
if(two[word[i]]!=n-2-tone[word[i]]){printf("ERROR!");exit(0);}
//比较两种算法的结果是否相同
fu(i,1,n-1)
cout<<word[i]<<'='<<two[word[i]]<<' ';
printf("\n");
printf("%d",n-1);
}
int main(){
in();
solve();
return 0;
}

P1013 [NOIP1998 提高组] 进制位的更多相关文章

  1. [洛谷 P1013] NOIP1998 提高组 进制位

    问题描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: L K V E L L K V E K K V E KL V V E KL KK E E K ...

  2. 洛谷P1013 进制位

    P1013 进制位 题目描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: + L K V E L L K V E K K V E KL V V E ...

  3. 洛谷 P1013 进制位

    P1013 进制位 题目描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: + L K V E L L K V E K K V E KL V V E ...

  4. [NOIP1999]进制位(搜索)

    P1013 进制位 题目描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: + L K V E L L K V E K K V E KL V V E ...

  5. NOIP1998提高组 题解报告

    T1 进制位 题目大意:自己看吧 首先让我们来看两个引理: 如果有解,则进制一定为\(n - 1\) 如果有解,则字母一定表示\(0\) 至 \(n - 1\) 的数 证明如下: 因为有 \(n - ...

  6. [NOIP1998] 提高组 洛谷P1013 进制位

    题目描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: L K V E L L K V E K K V E KL V V E KL KK E E K ...

  7. noip 1998 洛谷P1013 进制位

    题目描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: L K V E L L K V E K K V E KL V V E KL KK E E K ...

  8. 洛谷 P1013 进制位 【搜索 + 进制运算】

    题目描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: + L K V E L L K V E K K V E KL V V E KL KK E E ...

  9. 【Luogu】P1013进制位(搜索)

    题目链接在这里 这题和虫食算比较类似.做完这道题可以去做虫食算.都是搜索一类的题. 这样 我们分析题目可以发现进制只可能是字母的个数,也就是n-1.为什么? 因为题目要求完整的加法表才算数.如果进制低 ...

随机推荐

  1. Sqli-Labs less29-31

    Less-29 可以从介绍上看出,第29关被称为世界上最好的WAF,网上许多讲解的办法就是和第一关差不多,其实是不对的. sqli-labs文件夹下面还有tomcat文件,这才是真正的less,里面的 ...

  2. Centos7-编译安装zlib

    1.解压并进入zlib目录tar xf zlib-1.2.11.tar.gz cd zlib-1.2.11 2.查看编辑参数[root@manage zlib-1.2.11]#./configure ...

  3. SQL 练习13

    查询没学过"张三"老师讲授的任一门课程的学生姓名 SELECT * from Student WHERE SId not in ( SELECT SC.SId from Teach ...

  4. JavaWeb学习笔记(四)

    本文内容 1. 会话技术 1. Cookie 2. Session 2. JSP:入门学习 会话技术 1. 会话:一次会话中包含多次请求和响应. * 一次会话:浏览器第一次给服务器资源发送请求,会话建 ...

  5. C++继承体系中的内存对齐

    本篇随笔讨论一个比较冷门的知识,继承结构中内存对齐的问题,如今内存越来越大也越来越便宜,大部分人都已经不再关注内存对齐的问题了.但是作为一个有追求的技术人员,实现功能永远都是最基本的要求,把代码优化到 ...

  6. UWP 动画之路径

    xml --------------------------------------------- <Page x:Class="MyApp.MainPage" xmlns= ...

  7. 【java虚拟机】jvm调优原则

    转自:https://www.cnblogs.com/xiaopaipai/p/10522794.html 合理规划jvm性能调优 JVM性能调优涉及到方方面面的取舍,往往是牵一发而动全身,需要全盘考 ...

  8. javacc在stanfordnlp中的应用

    总结: 这个javacc感觉比较复杂,在于stanfordnlp中 p.p1 { margin: 0; font: 11px Monaco } CoreMapExpressionExtractor这个 ...

  9. 1.3RDD的设计与运行原理

    此文为个人学习笔记如需系统学习请访问http://dblab.xmu.edu.cn/blog/1709-2/ 提供一种通用的数据抽象 RDD典型的执行过程如下: RDD读入外部数据源(或者内存中的集合 ...

  10. 每天迁移MySQL历史数据到历史库Python脚本

    #!/usr/bin/env python # coding:utf-8 #__author__ = 'Logan'      import MySQLdb import sys import dat ...