P3810 【模板】三维偏序(陌上花开)

更好的阅读体验1

更好的阅读体验2


前置算法

  • 树状数组求逆序对
  • 归并排序求逆序对

解题之前,让我们来看一看弱化版本 \(\to\) 二维偏序


题意

给定两个长度为数组 \(a_1,a_2,\dots,a_n\),\(b_1,b_2,\dots,b_n\) 求对于每一个 \(i\),\(a_j\le a_i\) 且 \(b_j\le b_i\) 的 \(j\) 有多少个。

解法1

考虑用结构体把数组存起来,对 \(a\) 进行排序,再用一个值域树状数组维护 \(b\) 值即可。

还没完。由于可能出现 \(a_i=a_j\) 且 \(b_i=b_j\) 的情况,所以需要去重。

提到去重,就要在结构体里面多加一个 \(x\) 。 \(x_i\) 表示与 \(a_j=a_i,b_j=b_i\) 的 \(j\) 的个数,\(x_i\) 初始为 \(1\)

去重毒瘤的要死

解法2

还是用结构体存,对 \(a\) 进行排序+去重,后面考虑用归并排序来求

回想一下归并排序求逆序对,我们求的是 \(a_i\) 作为逆序对 \((j,i)\) 的 \(j\) 的总个数。

在这里,\(a\) 已经按大小排好了,所以我们只考虑对 \(b\) 值求逆序对就行了。

深刻注意解法2


三维偏序

第一步

和二维偏序一样,先按 \(a\) 值排好序,去重

第二步

为了简化题目,先考虑简易版本不存在 \(a_i=a_j\) 且 \(b_i=b_j\) 且 \(c_i=c_j\) 的情况,标准版本放在第三步。

进入到今天的正题: CDQ 讲解部分。

CDQ 分治,顾名思义,是一种分治。而分治,就需要把 \([l,r]\) 分为 \([l,mid]\) 和 \([mid+1,r]\) 。而对于我们要寻找的一个符合 \(a_j\le a_i,b_j\le b_i,c_j\le c_i\) 的点对 \((i,j)\) 必须符合以下三种情况之一:

  1. \(1\le i,j\le mid\gets\) 这在递归处理左半边时已经处理了
  2. \(mid\lt i,j\le n\gets\) 这在递归处理右半边时已经处理了
  3. \(1\le i,j\le n\gets\) 这是我们在递归之后需要处理的点对

按分治三部曲走,接下来就是合并左右区间并统计答案了了,这里按归并排序求逆序对的思路来。

由于 \(a,b\) 值都被我们处理好了,接下来就是毒瘤的 \(c\) 值,用树状数组维护。

在合并中,我们分两种情况:

  1. 此时的最小值在左,那么我们让树状数组的左边那个数的 \(c\) 值位置加一
  2. 此时的最小值在右,那么我们让答案加上树状数组从 \(1\) 到右边数的 \(c\) 值位置的和

如果搞不懂为什么左是加,右是查,建议重新看一看归并排序求逆序对。

注意:每一次使用完后树状数组要清空。如果单纯 memset,会超时(因为是 \(O(n)\) ),清空应该对于每一个被存放在树状数组里的 \(c_i\) ,其在树状数组里面的值 \(-1\)

int tmp[maxn]; // 临时存放合并好的值的数组
void CDQ(int l,int r){
if(l == r) return; 
int mid = l + r >> 1,p = l,q = mid + 1,len = 0;
CDQ(l,mid),CDQ(mid + 1,r); // 递归处理
while(p <= mid && q <= r){ // 合并子区间
if(a[p].b <= a[q].b) bit.update(a[p].c,1),tmp[++len] = a[p++]; // 选左边,此时更新树状数组
else a[q].ans += bit.query(a[q].c),tmp[++len] = a[q++]; // 选右边,此时答案要加上值域树状数组的查询
}
while(p <= mid) bit.update(a[p].c,1),tmp[++len] = a[p++]; // 归并左边剩下部分
while(q <= r) a[q].ans += bit.query(a[q].c),tmp[++len] = a[q++]; // 归并右边剩下部分
for(int i = l;i <= mid;++i) bit.update(a[i].c,-1); // 清空
for(int i = 1;i <= len;++i) a[l + i - 1] = tmp[i]; // 把临时数组里的值拷贝到原数组
}

第三步

由于第二步只能处理不存在相同的情况,接下来讲解如果存在 \(a_i=a_j,b_i=b_j,c_i=c_j\) 的 \((i,j)\) 该怎么处理。

注意刚才我们树状数组是这样更新的:bit.update(a[p].c,1)

这里的 1 实际上就是 \(a_s=a_p,b_s=b_p,c_s=c_p\) 的 \(s\) 的个数,记为 \(x\) ,\(x_i\) 我们在去重时求出。

因此代码如下:

int tmp[maxn]; 
void CDQ(int l,int r){
if(l == r) return;
int mid = l + r >> 1,p = l,q = mid + 1,len = 0;
CDQ(l,mid),CDQ(mid + 1,r);
while(p <= mid && q <= r){
if(a[p].b <= a[q].b) bit.update(a[p].c,a[p].x),tmp[++len] = a[p++];
else a[q].ans += bit.query(a[q].c),tmp[++len] = a[q++];
}
while(p <= mid) bit.update(a[p].c,a[p].x),tmp[++len] = a[p++];
while(q <= r) a[q].ans += bit.query(a[q].c),tmp[++len] = a[q++];
for(int i = l;i <= mid;++i) bit.update(a[i].c,-a[i].x);
for(int i = 1;i <= len;++i) a[l + i - 1] = tmp[i];
}

第四步

这时 CDQ 分治已经完成了,我们现在需要统计答案

按照刚才的代码,a[i].ans 表示 \(a_j\le a_i,b_j\le b_i,c_j\le c_i\) 但不包括 \(a_j=a_i,b_j=b_i,c_j=c_i\) 的 \(j\) 的个数,而 a[i].x 正好表示了 \(a_j=a_i,b_j=b_i,c_j=c_i\) 的 \(j\) 的个数。于是 a[i].ans + a[i].x 就是去重后第 \(i\) 个点的答案。

for(int i = 1;i <= cnt;++i) res[a[i].ans + a[i].x - 1] += a[i].x; // 注意是 + a[i].x,因为还有与 i 值相同所有 j,其总个数是 a[i].x
for(int i = 0;i < n;++i) printf("%d\n",res[i]);

\(\color{#52C41A}\texttt{AC CODE}\)

#include<stdio.h>
#include<algorithm>
const int maxn = 114514;
int n,k;
struct BIT{
int t[maxn << 1];
int lowbit(int i){return i & -i;}
void update(int i,int x){for(;i <= k;i += lowbit(i)) t[i] += x;}
int query(int i){int ans = 0;for(;i;i -= lowbit(i)) ans += t[i];return ans;}
} bit; // 树状数组
struct number{
int a,b,c,ans,x;
bool operator<(const number& y) const{return a != y.a ? a < y.a : b != y.b ? b < y.b : c < y.c;}
} a[maxn],tmp[maxn]; // 数的结构体
int res[maxn];
void CDQ(int l,int r){
if(l == r) return;
int mid = l + r >> 1,p = l,q = mid + 1,len = 0;
CDQ(l,mid),CDQ(mid + 1,r);
while(p <= mid && q <= r){
if(a[p].b <= a[q].b) bit.update(a[p].c,a[p].x),tmp[++len] = a[p++];
else a[q].ans += bit.query(a[q].c),tmp[++len] = a[q++];
}
while(p <= mid) bit.update(a[p].c,a[p].x),tmp[++len] = a[p++];
while(q <= r) a[q].ans += bit.query(a[q].c),tmp[++len] = a[q++];
for(int i = l;i <= mid;++i) bit.update(a[i].c,-a[i].x);
for(int i = 1;i <= len;++i) a[l + i - 1] = tmp[i];
}
int main(){
scanf("%d%d",&n,&k);
for(int i = 1;i <= n;++i) scanf("%d%d%d",&a[i].a,&a[i].b,&a[i].c),a[i].x = 1,a[i].ans = 0;
std::sort(a + 1,a + n + 1); // 排序
int cnt = 1;
for(int i = 2;i <= n;++i)
if(a[i].a == a[cnt].a && a[i].b == a[cnt].b && a[i].c == a[cnt].c) ++a[cnt].x; // 如果遇到与 i 一样的,x 值就要自加一
else a[++cnt] = a[i];
CDQ(1,cnt); // 注意不是 CDQ(1,n)
for(int i = 1;i <= cnt;++i) res[a[i].ans + a[i].x - 1] += a[i].x;
for(int i = 0;i < n;++i) printf("%d\n",res[i]);
return 0;
}

题解-P3810的更多相关文章

  1. BZOJ3262/洛谷P3810 陌上花开 分治 三维偏序 树状数组

    原文链接http://www.cnblogs.com/zhouzhendong/p/8672131.html 题目传送门 - BZOJ3262 题目传送门 - 洛谷P3810 题意 有$n$个元素,第 ...

  2. 洛谷P3810 陌上花开(CDQ分治)

    洛谷P3810 陌上花开 传送门 题解: CDQ分治模板题. 一维排序,二维归并,三维树状数组. 核心思想是分治,即计算左边区间对右边区间的影响. 代码如下: #include <bits/st ...

  3. P3810 陌上花开 CDQ分治

    陌上花开 CDQ分治 传送门:https://www.luogu.org/problemnew/show/P3810 题意: \[ 有n 个元素,第 i 个元素有 a_i. b_i. c_i 三个属性 ...

  4. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  5. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  6. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  7. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  8. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  9. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

随机推荐

  1. uni-app&H5&Android混合开发二 || 使用Android Studio打包应用APK

    前言: 在上一章节我们已经讲了如何uni-app离线打包Android平台教程,这一章就该来讲讲如何使用Android Studio打包应用APK提供给Android手机安装使用了. 第一步.首先打开 ...

  2. 正则表达式:(mysql)REGEXP

    检索列prod_name包含文本1000的所以行 SELECT prod_name FROM  products WHERE prod_name REGEXP '1000' ORDER BY prod ...

  3. 百度地图api逆地址解析 PHP

    一.说明:逆地址查询就是根据经纬度信息获取地址位置信息 二.参数:$lat:纬度值 ,$lng:经度值 ,$ak = 自己的AK:(百度地图开放平台对应ak链接:http://lbsyun.baidu ...

  4. Python分支结构你真的搞定了吗?

    分支结构 分支结构能够让计算机像人一样进行思考,应对不同的场景做出不同的回应. Python中不支持switch语法,目前仅支持if/else形式,但是在Python3.10的测试版本中,貌似支持了s ...

  5. c#log4net简单好用的配置

    新建文件log4net.config 编辑文件log4net.config <configuration> <configSections> <!--日志记录--> ...

  6. 无连接运输:UDP

    多路复用和解复用与校验和是UDP唯一能做的事,运输层的协议必须做点什么,什么都没有就不需要这一层了. 为什么要使用UDP 既然有了可靠传输的TCP,为什么还要在udp之上来构件应用呢? 有效载荷大,T ...

  7. Ribbon导航

    简介 最近都在弄微服务的东西,现在来记录下收获.我从一知半解到现在能从0搭建使用最大的感触有两点 1.微服务各大组件的版本很多,网上很多博客内容不一定适合你的版本,很多时候苦苦琢磨都是无用功 2.网上 ...

  8. 神奇的不可见空格<200b>导致代码异常

    故事是这样发生的,在做一个JSON对象转化的时候,出现了转化异常:刚开始还是以为是格式错误,后来一步步排除,才发现是不可见空格<200b>导致的解析异常 出现 使用Typora编写文字时, ...

  9. java基础——初识面向对象

    面向对象 面向过程&面向对象 面向过程思想 步骤请简单:第一步做什么,第一步做什么 面向过程适合处理一些较为简单的东西 面向对象思想 物以类聚,分类的思维模式,思考的问题首先会解决问题需要哪些 ...

  10. 封装axios在util中

    创建util工具类,封装通用的get和post请求 封装axios成工具类,方便大家请求调用 1.创建util文件夹 2.创建request.js 3.封装 //封装请求相关方法 //初始化一个axi ...