(七)目标检测算法之SSD
系列博客链接:
(一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html
(二)目标检测算法之R-CNN https://www.cnblogs.com/kongweisi/p/10895055.html
(三)目标检测算法之SPPNet https://www.cnblogs.com/kongweisi/p/10899771.html
(四)目标检测算法之Fast R-CNN https://www.cnblogs.com/kongweisi/p/10900021.html
(五)目标检测算法之Faster R-CNN https://www.cnblogs.com/kongweisi/p/10904260.html
(六)目标检测算法之YOLO https://www.cnblogs.com/kongweisi/p/11001688.html
本文概述:
- 目标
- 知道SSD的结构
- 说明Detector & classifier的作用
- 说明SSD的优点
1 SSD
1.1 简介
SSD算法源于2016年发表的算法论文,论文网址:https://arxiv.org/abs/1512.02325
SSD的特点在于:
SSD结合了YOLO中的回归思想和Faster-RCNN中的Anchor机制,使用全图各个位置的多尺度区域进行回归,既保持了YOLO速度快的特性,也保证了窗口预测的跟Faster-RCNN一样比较精准。
SSD的核心是在不同尺度的特征特征图上采用卷积核来预测一系列Default Bounding Boxes的类别、坐标偏移。
1.2 结构
以VGG-16为基础,使用VGG的前五个卷积,后面增加从CONV6开始的5个卷积结构,输入图片要求300*300。
1.3 流程
SSD中引入了Defalut Box,实际上与Faster R-CNN的anchor box机制类似,就是预设一些目标预选框,
不同的是在不同尺度feature map所有特征点上是使用不同的prior boxes
1.4 Detector & classifier
Detector & classifier的三个部分:
1.default boxes: 默认候选框
2.localization:4个位置偏移
3.confidence:21个类别置信度(要区分出背景)
1.4.1 default boxes
default boxex类似于RPN当中的滑动窗口生成的候选框,SSD中也是对特征图中的每一个像素生成若干个框。
只不过SSD当中的默认框有生成的公式
了解:
- ratio:长宽比
- 默认框的大小计算参数:s_min:最底层的特征图计算参数,s_max最顶层的特征图计算参数
1.4.2 localization与confidence
这两者的意义如下,主要作用用来过滤,训练
经过这一次过滤操作,会将候选框筛选出数量较少的prior boxes。
关于三种boxes的解释区别:
- gournd truth boxes:训练集中,标注好的待检测类别的的位置,即真实的位置,目标的左下角和右上角坐标
- default boxes:在feature map上每一个点上生成的某一类别图片的位置。feature map每个点生成4或6个box(数量是事先指定的),格式为转换过后的(x, y, w, h)
- prior boxes:经过置信度阈值筛选后,剩下的可能性高的boxes。这个box才是会被真正去做回归
也就是说SSD中提供事先计算好的候选框这样的机制,只不过不需要再像RPN那种筛选调整,
而是直接经过prior boxes之后做回归操作(因为confidence中提供了21个类别概率可以筛选出背景)
问题:SSD中的多个Detector & classifier有什么作用?
SSD的核心是在不同尺度的特征图上来进行Detector & classifier 容易使得SSD观察到更小的物体
2 训练与测试流程
2.1 train流程
- 输入->输出->结果与ground truth标记样本回归损失计算->反向传播, 更新权值
1. 样本标记:
利用anchor与对应的ground truth进行标记正负样本,每次并不训练8732张计算好的default boxes, 先进行置信度筛选,并且训练指定的正样本和负样本, 如下规则
正样本
- 1.与GT重合最高的boxes, 其输出对应label设为对应物体.
- 2.物体GT与anchor iou满足大于0.5
负样本:其它的样本标记为负样本
在训练时, default boxes按照正负样本控制positive:negative=1:3
3. 损失
网络输出预测的predict box与ground truth回归变换之间的损失计算, 置信度是采用 Softmax Loss(Faster R-CNN是log loss),位置回归则是采用 Smooth L1 loss (与Faster R-CNN一样)
2.2 test流程
- 输入->输出->nms->输出
3 比较
从图中看出SSD算法有较高的准确率和性能,兼顾了速度和精度
4 总结
- SSD的结构
- Detector & classifier的组成部分以及作用
- SSD的训练样本标记
- GT与default boxes的格式转换过程
(七)目标检测算法之SSD的更多相关文章
- 基于深度学习的目标检测算法:SSD——常见的目标检测算法
from:https://blog.csdn.net/u013989576/article/details/73439202 问题引入: 目前,常见的目标检测算法,如Faster R-CNN,存在着速 ...
- AI SSD目标检测算法
Single Shot multibox Detector,简称SSD,是一种目标检测算法. Single Shot意味着SSD属于one stage方法,multibox表示多框预测. CNN 多尺 ...
- 目标检测算法SSD之训练自己的数据集
目标检测算法SSD之训练自己的数据集 prerequesties 预备知识/前提条件 下载和配置了最新SSD代码 git clone https://github.com/weiliu89/caffe ...
- 深度学习 目标检测算法 SSD 论文简介
深度学习 目标检测算法 SSD 论文简介 一.论文简介: ECCV-2016 Paper:https://arxiv.org/pdf/1512.02325v5.pdf Slides:http://w ...
- 目标检测算法SSD在window环境下GPU配置训练自己的数据集
由于最近想试一下牛掰的目标检测算法SSD.于是乎,自己做了几千张数据(实际只有几百张,利用数据扩充算法比如镜像,噪声,切割,旋转等扩充到了几千张,其实还是很不够).于是在网上找了相关的介绍,自己处理数 ...
- 深度学习笔记之目标检测算法系列(包括RCNN、Fast RCNN、Faster RCNN和SSD)
不多说,直接上干货! 本文一系列目标检测算法:RCNN, Fast RCNN, Faster RCNN代表当下目标检测的前沿水平,在github都给出了基于Caffe的源码. • RCNN RCN ...
- 目标检测算法的总结(R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD、FNP、ALEXnet、RetianNet、VGG Net-16)
目标检测解决的是计算机视觉任务的基本问题:即What objects are where?图像中有什么目标,在哪里?这意味着,我们不仅要用算法判断图片中是不是要检测的目标, 还要在图片中标记出它的位置 ...
- 如何使用 pytorch 实现 SSD 目标检测算法
前言 SSD 的全称是 Single Shot MultiBox Detector,它和 YOLO 一样,是 One-Stage 目标检测算法中的一种.由于是单阶段的算法,不需要产生所谓的候选区域,所 ...
- 基于候选区域的深度学习目标检测算法R-CNN,Fast R-CNN,Faster R-CNN
参考文献 [1]Rich feature hierarchies for accurate object detection and semantic segmentation [2]Fast R-C ...
随机推荐
- 源码安装gitlab
GitLab服务构成 GitLab由以下服务构成: nginx:静态Web服务器 gitlab-shell:用于处理Git命令和修改authorized keys列表 gitlab-workhor ...
- Java8特性大全(最新版)
一.序言 Java8 是一个里程碑式的版本,凭借如下新特性,让人对其赞不绝口. Lambda 表达式给代码构建带来了全新的风格和能力: Steam API 丰富了集合操作,拓展了集合的能力: 新日期时 ...
- 最近公共祖先-LCA
题目描述 时间限制:1.2s 内存限制:256.0MB 问题描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入格式 第一行包含三个正整数\(N\),\(M\),\(S\),分别 ...
- nginx103
user nobody;worker_processes 1;error_log /home/logs/error.log info;#pid logs/nginx.pid;ev ...
- Java泛型T与?
感谢大佬:http://m.mamicode.com/info-detail-2657551.html 一.区别 单独的T 代表一个类型 ,而 Class<T>代表这个类型所对应的类, C ...
- mac brew安装
mac 安装homebrew出错 Failed to connect to raw.githubusercontent.com port 443: Connection refused error:原 ...
- jdk1.5新特性之-------静态导入
import java.util.ArrayList; import java.util.Collections; /* jdk1.5新特性之-------静态导入 静态导入的作用: 简化书写. 静态 ...
- 程序员的情人节「GitHub 热点速览 v.22.07」
又是一年情人日,刚好还是发文的今天.也没什么好送的,送点程序员的浪漫--代码和开源项目吧.记得在本周特推查收这份来自程序员的独有浪漫. 本周 GitHub 霸榜的项目基本上都是老项目,从老项目中挖点新 ...
- 如何综合运用对称加密技术、非对称加密技术(公钥密码体制)和Hash函数 保证信息的保密性、完整性、可用性和不可否认性?
一.几个问题 在提出问题之前,先创建一个使用场景,发送方(甲方)要给接收方(乙方)发送投标书.大家知道,投标书都包括发送方的标的,这个标的是不能被竞标者知晓,更不能被竞标者修改的.在传输的投标书时,提 ...
- MXNet学习-第一个例子:训练MNIST数据集
一个门外汉写的MXNET跑MNIST的例子,三层全连接层最后验证率是97%左右,毕竟是第一个例子,主要就是用来理解MXNet怎么使用. #导入需要的模块 import numpy as np #num ...