题解 [CTSC2006]歌唱王国
Desctiption
见题面。
Solution
人类智慧。。。
考虑这样一个赌博游戏,现在有一个猴子,它随机从 \(1\sim n\) 中选一个打出来。现在有若干个赌徒,他们一开始都有 \(\$1\),现在有一个字符串 \(S\),赌徒在第一次押猴子会打 \(S_1\),如果赢了就回收 \(\$ n\) ,如果输了就可以滚他的蛋了。如果赌徒赢了就继续押猴子会打 \(S_2\),如果赢了就回收 \(\$ n^2\) ,否则就可以滚蛋了。以此类推,并且猴子每打一个字都会新加进来一个赌徒。当某一个赌徒不用滚蛋的时候赌场就可以滚蛋了。
我们观察后可以发现这个赌博是一个公平博弈,因为一个赌徒最后的期望财产为 \(1\),所以赌徒和赌场从期望上来讲都是不赚不亏的。接着我们考虑结束前发生了什么。
我们假设 \(S=\{1,4,1,5,1,1,4,1\}\),\(n=5\),那么最后一个赌徒得了 \(\$5\),倒数第三个赌徒得了 \(\$5^3\) ,倒数第八个赌徒得了 \(\$5^8\),其余赌徒都滚蛋了。
又因为这个博弈是公平的,也就是说从期望角度,赌场需要来 \(5^1+5^3+5^8\) 个人才可以。我们另外可以看出,赌徒得的总钱数(即这个题中唱歌期望时间)就是:
\]
求 \(\text{Border}\) 可以直接 KMP。
时间复杂度 \(\Theta(n)\)。
Code
#include <bits/stdc++.h>
using namespace std;
#define Int register int
#define MAXN 100005
#define mod 10000
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
int n,m,t,s[MAXN],f[MAXN],fail[MAXN];
int mul (int a,int b){return a * b % mod;}
int add (int a,int b){return a + b >= mod ? a + b - mod : a + b;}
int qkpow (int a,int b){
int res = 1;for (;b;b >>= 1,a = mul (a,a)) if (b & 1) res = mul (res,a);
return res;
}
void Work (int now){
read (m);
for (Int i = 1;i <= m;++ i) read (s[i]);
for (Int i = 2,t = 0;i <= m;++ i){
while (t && s[t + 1] != s[i]) t = fail[t];
if (s[t + 1] == s[i]) ++ t;
fail[i] = t;
}
for (Int i = m;i;i = fail[i]) f[i] = now;
int ans = 0;for (Int i = 1,tmp = n % mod;i <= m;++ i,tmp = mul (tmp,n)) if (f[i] == now) ans = add (ans,tmp);
printf ("%04d\n",ans);
}
signed main(){
read (n,t);
while (t --> 0) Work (t + 1);
return 0;
}
题解 [CTSC2006]歌唱王国的更多相关文章
- [CTSC2006]歌唱王国
[CTSC2006]歌唱王国 Tags:题解 题意 链接:在空串后不断随机添加字符,直到出现串\(S_i\)为止.求最终串的期望长度.\(\sum |S_i|\le 5*10^6\) 题解 以下内容来 ...
- bzoi1152 [CTSC2006]歌唱王国Singleland
[CTSC2006]歌唱王国Singleland Time Limit: 30 Sec Memory Limit: 162 MB Description 在歌唱王国,所有人的名字都是一个非空的仅包含整 ...
- 【题解】歌唱王国(概率生成函数+KMP)+伦讲的求方差
[题解]歌唱王国(概率生成函数+KMP)+伦讲的求方差 生成函数的本质是什么呀!为什么和It-st一样神 设\(f_i\)表示填了\(i\)个时候停下来的概率,\(g_i\)是填了\(i\)个的时候不 ...
- 【BZOJ】1152: [CTSC2006]歌唱王国Singleland
题解 读错题了,是最后留下一个牛人首长歌颂他,和其他人没有关系,t就相当于数据组数 结论题,具体可看 https://www.zhihu.com/question/59895916/answer/19 ...
- 洛谷P4548 [CTSC2006]歌唱王国(概率生成函数)
题面 传送门 给定一个长度为\(L\)的序列\(A\).然后每次掷一个标有\(1\)到\(m\)的公平骰子并将其上的数字加入到初始为空的序列\(B\)的末尾,如果序列B中已经出现了给定序列\(A\), ...
- Luogu4548 CTSC2006 歌唱王国 概率生成函数、哈希
传送门 orz ymd 考虑构造生成函数:设\(F(x) = \sum\limits_{i=0}^\infty f_ix^i\),其中\(f_i\)表示答案为\(i\)的概率:又设\(G(x) = \ ...
- luogu P4548 [CTSC2006]歌唱王国
传送门 这题\(\mathrm{YMD}\)去年就讲了,然而我今年才做(捂脸) 考虑生成函数,设\(f_i\)表示最终串长为\(i\)的概率,其概率生成函数为\(F(x)=\sum f_ix^i\), ...
- 洛谷 P4548 - [CTSC2006]歌唱王国(概率生成函数)
洛谷题面传送门 PGF 入门好题. 首先介绍一下 PGF 的基本概念.对于随机变量 \(X\),满足 \(X\) 的取值总是非负整数,我们即 \(P(v)\) 表示 \(X=v\) 的概率,那么我们定 ...
- 【BZOJ1152】歌唱王国(生成函数,KMP)
[BZOJ1152]歌唱王国(生成函数,KMP) 题面 BZOJ 洛谷 题解 根据\(YMD\)论文来的QwQ. 首先大家都知道普通型生成函数是\(\displaystyle \sum_{i=0}^{ ...
随机推荐
- MySQL-SQL基础-查询1
#子查询-某些情况下,当进行查询的时候,需要的条件是另外一个select语句的结果,这个时候就要用到子查询.用于子查询的关键字主要包括: in.not in.=.!=.exists.not exist ...
- spring boot 系列之七:SpringBoot整合Mybatis
springboot已经很流行,但是它仍需要搭配一款ORM框架来实现数据的CRUD,之前已经分享过JdbcTemplete和JPA的整合,本次分享下Mybatis的整合. 对于mybatis的使用,需 ...
- 剑指offer计划9(动态规划中等版)---java
1.1.题目1 剑指 Offer 42. 连续子数组的最大和 1.2.解法 得到转移方程后,单次遍历. 当前面的连续子数组的和比较是否大于0,是则加起来, 若小于零,则当前的值就可当子数组的开头. 判 ...
- python glob.glob()
glob()函数可以将某目录下所有跟通配符模式相同的文件放到一个列表中,有了这个函数,我们再想生成所有文件的列表就不需要使用for循环遍历目录了,直接使用glob.glob(path+pattern) ...
- noip模拟36
\(\color{white}{\mathbb{荷花映日,莲叶遮天,名之以:残荷}}\) 今天再次翻车掉出前十 开题看错 \(t1\) 以为操作2的值固定发现是个简单题,然后 \(t2\) 开始大力 ...
- 如果还是看不懂container_of()函数,那算我输
在linux 内核编程中,会经常见到一个宏函数container_of(ptr,type,member), 但是当你通过追踪源码时,像我们这样的一般人就会绝望了(这一堆都是什么呀? 函数还可以这样定义 ...
- 深入理解SpringBoot核心机制《spring-boot-starter》
深入理解SpringBoot核心机制<spring-boot-starter> 前言: 对于这几年java火爆天的springBoot我相信大家都有所使用过,在springBoot的项目中 ...
- 传递集合参数以及SpringMVC和Struts2的区别
一.传递集合参数 二.和Struts2的区别 Struts2是基于类封装请求参数,SpringMVC是基于方法封装参数:
- 面试HashMap你都扛不住,还想拿到offer?
当我们面试Java开发岗位时,面试官问的频率出现最多的问题,就是这个HashMap,不管是传统型公司还是互联公司,HashMap是必问的,所以作者爆肝整理了HashMap的23个问题以及答案,请查收! ...
- WinUI 3学习笔记(3)—— ComboBox & DropDownButton & SplitButton
本篇想介绍相对小众但颇具使用价值的控件SplitButton,提到SplitButton难免会拿来与ComboBox进行比较,同时在WinUI 3的控件库中,还有一个默默无闻的DropDownButt ...