POJ3070矩阵快速幂简单题
题意:
求斐波那契后四位,n <= 1,000,000,000.
思路:
简单矩阵快速幂,好久没刷矩阵题了,先找个最简单的练练手,总结下矩阵推理过程,其实比较简单,关键是能把问题转换成矩阵的题目,也就是转换成简单加减地推式,下面说下怎么样根据递推式构造矩阵把,这个不难,我的习惯是在中间插矩阵,就是比如斐波那契
a[n] = a[n-1] + a[n-2];
我的习惯是这样,首先要知道这个式子是有连续的两个项就可以推出第三个项
那么
a1 a2 0 1 a2 a3 这样就直接出来了中间矩阵,然后快速幂处理,这个是
1 1 最简单的了,一般都是要想办法各种转换,然后在构造式子
然后在快速幂,还有注意,矩阵可以把最下面那个循环拿到上面
然后通过if(mat[i][k])来优化,我下面的用了,这个要看0出现 的多不多(比较重要),还有可以通过调换循环位置(这个是底 层优化,不在算法范围之内)优化,推荐一个好题,杭电上有个 叫 什么什么233的那个,记得当时做那个题做的比较爽。
#include<stdio.h>
#include<string.h>
#define MOD 10000
typedef struct
{
int mat[3][3];
}M;
M matM(M a ,M b)
{
M c;
memset(c.mat ,0 ,sizeof(c.mat));
for(int k = 1 ;k <= 2 ;k ++)
for(int i = 1 ;i <= 2 ;i ++)
if(a.mat[i][k])
for(int j = 1 ;j <= 2 ;j ++)
c.mat[i][j] = (c.mat[i][j] + a.mat[i][k] * b.mat[k][j]) % MOD;
return c;
}
M qPowMat(M a ,int b)
{
M c;
memset(c.mat ,0 ,sizeof(c.mat));
for(int i = 1 ;i <= 2 ;i ++)
c.mat[i][i] = 1;
while(b)
{
if(b&1) c = matM(c ,a);
a = matM(a ,a);
b >>= 1;
}
return c;
}
int main ()
{
int n ,i;
M star ,ans;
star.mat[1][1] = 0;
star.mat[1][2] = star.mat[2][1] = star.mat[2][2] = 1;
while(~scanf("%d" ,&n) && n != -1)
{
if(n == 0)
{
printf("0\n");
continue;
}
if(n == 1)
{
printf("1\n");
continue;
}
ans = qPowMat(star ,n);
printf("%d\n" ,(0 * ans.mat[1][1] + 1 * ans.mat[2][1]) % MOD);
}
return 0;
}
POJ3070矩阵快速幂简单题的更多相关文章
- luoguP3390(矩阵快速幂模板题)
链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<c ...
- POJ3070 斐波那契数列递推 矩阵快速幂模板题
题目分析: 对于给出的n,求出斐波那契数列第n项的最后4为数,当n很大的时候,普通的递推会超时,这里介绍用矩阵快速幂解决当递推次数很大时的结果,这里矩阵已经给出,直接计算即可 #include< ...
- 解题报告:poj 3070 - 矩阵快速幂简单应用
2017-09-13 19:22:01 writer:pprp 题意很简单,就是通过矩阵快速幂进行运算,得到斐波那契数列靠后的位数 . 这是原理,实现部分就是矩阵的快速幂,也就是二分来做 矩阵快速幂可 ...
- HDU 1575 矩阵快速幂裸题
题意:中文题 我就不说了吧,... 思路:矩阵快速幂 // by SiriusRen #include <cstdio> #include <cstring> using na ...
- POJ_Fibonacci POJ_3070(矩阵快速幂入门题,附上自己写的矩阵模板)
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10521 Accepted: 7477 Descri ...
- Final Destination II -- 矩阵快速幂模板题
求f[n]=f[n-1]+f[n-2]+f[n-3] 我们知道 f[n] f[n-1] f[n-2] f[n-1] f[n-2] f[n-3] 1 1 ...
- hdu 1575 求一个矩阵的k次幂 再求迹 (矩阵快速幂模板题)
Problem DescriptionA为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input数据的第一行是一个T,表示有T组数据.每组数据的第一行有 ...
- poj3070矩阵快速幂求斐波那契数列
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13172 Accepted: 9368 Desc ...
- POJ3070 矩阵快速幂模板
题目:http://poj.org/problem?id=3070 矩阵快速幂模板.mod写到乘法的定义部分就行了. 别忘了 I ( ) 和 i n i t ( ) 要传引用! #include< ...
随机推荐
- PTA甲级—常用技巧与算法
散列 1078 Hashing (25 分) Quadratic probing (with positive increments only) is used to solve the collis ...
- 关于windows下服务一直处于启动ing的处理办法
1,找到服务名称,xxxx 进入cmd 2,sc queryex xxxx,找到pid 3,taskkill /f /pid 123 就可以终止这个启动中的进程了
- golang——win10环境protobuf的使用
1.protobuf配置 (1)https://github.com/protocolbuffers/protobuf/releases (2)选择适合的版本:protoc-3.8.0-win64.z ...
- 为什么要从 Linux 迁移到 BSD2
OpenZFS on Linux,是项目的 Linux 部分,目前有 345 个活跃的贡献者,有超过 5600 个提交,而且几乎每天都有提交!一些世界上最大的 CDN 和数据存储服务在 FreeBSD ...
- WPF 基础 - 绘画 1) 线段、矩形、圆弧及填充色
1. 绘画 1.1 图形类型 Line X1.Y1.X2.Y2,Stroke,StrokeThickness Rectangle 矩形 Ellipse 椭圆 Polygon 多边形(自动闭合) Pol ...
- 【odoo14】第十五章、网站客户端开发
odoo的web客户端.后台是员工经常使用的地方.在第九章中,我们了解了如何使用后台提供的各种可能性.本章,我们将了解如何扩展这种可能性.其中web模块包含了我们在使用odoo中的各种交互行为. 本章 ...
- 2019 GDUT Rating Contest I : Problem G. Back and Forth
题面: G. Back and Forth Input file: standard input Output file: standard output Time limit: 1 second Mem ...
- linux 安装FastFdfs
一.安装依赖软件和类库(安装前的准备) 依次执行以下命令: yum install gcc-c++ -y yum -y install zlib zlib-devel pcre pcre-devel ...
- python文件处理之fileinput
一.介绍 fileinput模块可以对一个或多个文件中的内容进行迭代.遍历等操作,我们常用的open函数是对一个文件进行读写操作. fileinput模块的input()函数比open函数更高效和好用 ...
- [题解] T'ill It's Over
前言 线段树+网络最大流的建模题. 博客园食用更佳 题目大意 最初时有 \(n\) 个 \(1\) .给定 \(op\) . \(l\) ,其中, \(l\) 为操作次数上限.你有四个操作: 若 \( ...