洛谷 P6189 - [NOI Online #1 入门组]跑步(根号分治+背包)
题意:
求有多少个数列 \(x\) 满足:
- \(\sum x_i=n\)
- \(x_i\geq x_{i+1}\)
答案对 \(p\) 取模。
。。。你确定这叫“入门”组?
一眼完全背包问题,然而 \(n^2\) 是根本过不了的,于是我便在那里打表找规律,结果毛用也没有(
考虑根号分治,令 \(m=\lfloor\sqrt{n}\rfloor\)。
对于 \(i\leq m\) 跑一遍完全背包。
对于 \(i>m\),不难发现我们顶多会选 \(m\) 个这样的 \(i\),所以我们采取另一种 \(dp\) 状态。
我们记 \(g_{i,j}\) 为选择了 \(i\) 个这样的 \(i\),它们的和为 \(j\) 的方案数。
那么有转移方程 \(g_{i,j}=g_{i-1,j-m-1}+g_{i,j-i}\)。
稍微解释一下这个 \(dp\) 方程,\(g_{i-1,j-m-1}\) 表示在序列末尾新增添一个 \(m+1\),\(g_{i,j-i}\) 表示将序列中所有数 \(+1\),由于我们得到的序列是单调递减的,所以一种方案一定恰好对于一种操作序列。
最后是计算答案,枚举 \(\leq m\) 的数和是多少,以及选择了多少个 \(>m\) 的数,可以在 \(\mathcal O(n\sqrt{n})\) 的时间内计算出答案。
总时间复杂度 \(\mathcal O(n\sqrt{n})\)。
感觉有点像 atcoder 风格的题。
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define ffe(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
typedef pair<int,int> pii;
typedef long long ll;
const int MAXN=1e5+5;
const int SQRT=320;
int n,m,p;
int dp[MAXN],f[SQRT][MAXN];
int main(){
scanf("%d%d",&n,&p);m=(int)(sqrt(n));
dp[0]=1;
for(int i=1;i<=m;i++){
for(int j=i;j<=n;j++) dp[j]=(dp[j]+dp[j-i])%p;
}
f[0][0]=1;
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
if(j>=i) f[i][j]=f[i][j-i];
if(j>=m+1) f[i][j]=(f[i][j]+f[i-1][j-m-1])%p;
}
}
int ans=0;
for(int i=0;i<=n;i++) for(int j=0;j<=m;j++)
ans=(ans+1ll*dp[i]*f[j][n-i])%p;
printf("%d\n",ans);
return 0;
}
洛谷 P6189 - [NOI Online #1 入门组]跑步(根号分治+背包)的更多相关文章
- P6189 [NOI Online #1 入门组] 跑步 (DP/根号分治)
(才了解到根号分治这样的妙方法......) 将每个数当成一种物品,最终要凑成n,这就是一个完全背包问题,复杂度O(n2),可以得80分(在考场上貌似足够了......) 1 #include < ...
- 洛谷 P6570 - [NOI Online #3 提高组] 优秀子序列(集合幂级数+多项式)
洛谷题面传送门 首先 \(3^n\) 的做法就不多说了,相信对于会状压 dp+会枚举子集的同学来说不算困难(暴论),因此这篇博客将着重讲解 \(2^nn^2\) 的做法. 首先如果我们把每个 \(a_ ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
- 洛谷 P6478 - [NOI Online #2 提高组] 游戏(二项式反演+树形 dp)
题面传送门 没错这就是我 boom0 的那场 NOIOL 的 T3 一年前,我在 NOIOL #2 的赛场上折戟沉沙,一年后,我从倒下的地方爬起. 我成功了,我不再是从前那个我了 我们首先假设 A 拥 ...
- P6474 [NOI Online #2 入门组] 荆轲刺秦王
P6474 [NOI Online #2 入门组] 荆轲刺秦王 bfs+差分+卡常 本来我其实是场内选手,但是因为记错提交时间,晚了半小时才交,交不上了,就自动降级为了场外选手 题面复杂,不简述了 首 ...
- 洛谷P1003 铺地毯 noip2011提高组day1T1
洛谷P1003 铺地毯 noip2011提高组day1T1 洛谷原题 题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n ...
- P7473 [NOI Online 2021 入门组] 重力球
P7473 [NOI Online 2021 入门组] 重力球 题意 给你一个正方形平面,某些位置有障碍,对于平面上两个球,每次你可以改变重力方向使两个球下落到最底端,求使两个球位置重合的最小改变重力 ...
- [NOI 2020 Online] 入门组T1 文具采购(洛谷 P6188)题解
原题传送门 题目部分:(来自于考试题面,经整理) [题目描述] 小明的班上共有 n 元班费,同学们准备使用班费集体购买 3 种物品: 1.圆规,每个 7 元. 2.笔,每支 4 元. 3.笔记本,每本 ...
- 洛谷P1371 NOI元丹
P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交 讨论 题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...
随机推荐
- nexus设置npm下载管理
nexus设置npm下载管理 第一步 登录私服网页 第二步 创建存储空间(如果使用默认的存储空间,此步骤可省略) 第三步 输入空间的名称,点击create创建 第四步 创建仓库 npm的仓库有三种: ...
- springcloud(二) 微服务架构编码构建
微服务架构编码构建 1 基础知识 1.1 版本 2 微服务cloud整体聚合父工程Project 2.1 new project 2.2 字符编码设置 utf-8 2.3 pom.xml 2.4 父工 ...
- Noip模拟75 2021.10.12
T1 如何优雅的送分 他说是送分题,我就刚,没刚出来,想到莫比乌斯容斥后就都没推出来 好吧还是不能被恶心的题目,挑衅的语言打乱做题节奏 于是这一场也就没了.... $F(i)$表示$i$的不同质因子集 ...
- K8S_Kubernetes
Google创造, K8S,是基于容器的集群管理平台, K8S集群 应用场景 微服务 这个集群主要包括两个部分 一个Master节点(主节点) 一群Node节点(计算节点) Master节 ...
- PHP笔记1__基础知识
客户端: 美妙的网页组成(都是由浏览器解释): 1.HTML 2.CSS--给HTML化妆 3.客户端脚本编程语言(JavaScript等)--特效 服务器端: 1.Web服务器Apache/Ngi ...
- zabbix 监控redis 挂掉自动重启 并发送企业微信
1.创建redis监控项[配置]-[主机]-[监控项]-创建监控项,监控6379端口(注意关闭防火墙或者开启防火墙端口6379) redis配置文件设置允许任何地址监听: 添加监控项 2.创建redi ...
- 【mysql2】下载安装mysql5.7版|不再更新系列
一.下载MySQL 5.7 版 MySQL 5.7 版:官网下载地址 https://dev.mysql.com/downloads/windows/installer/5.7.html 下载的是50 ...
- elasticsearch7.x配置文件
前言: 以下配置文件基于elasticsearch-7.13.4版本,当然也适用于其它7.x版本 集群环境: 部署3个节点的集群,各个节点不做角色区分,既是master,也是data,在性能 上这种方 ...
- JMeter学习笔记--工具简单介绍
一.JMeter 介绍 Apache JMeter是纯JAVA桌面应用程序,被设计为用于测试客户端/服务端结构的软件(例如web应用程序).它可以用来测试静态和动态资源的性能,例如:静态文件,Java ...
- 计算机网络tcp
tcp/ip协议 什么是这个协议:计算机与网络设备之间通信的时候,两者需要使用相同的语言,如何侦察到对方,如何传输,谁先传输,都需要规定有一系列的协议,而tcp/ip协议则是这样的一种 tcp/ip的 ...