题面传送门

题意:

求有多少个数列 \(x\) 满足:

  1. \(\sum x_i=n\)
  2. \(x_i\geq x_{i+1}\)

答案对 \(p\) 取模。

。。。你确定这叫“入门”组?

一眼完全背包问题,然而 \(n^2\) 是根本过不了的,于是我便在那里打表找规律,结果毛用也没有(

考虑根号分治,令 \(m=\lfloor\sqrt{n}\rfloor\)。

对于 \(i\leq m\) 跑一遍完全背包。

对于 \(i>m\),不难发现我们顶多会选 \(m\) 个这样的 \(i\),所以我们采取另一种 \(dp\) 状态。

我们记 \(g_{i,j}\) 为选择了 \(i\) 个这样的 \(i\),它们的和为 \(j\) 的方案数。

那么有转移方程 \(g_{i,j}=g_{i-1,j-m-1}+g_{i,j-i}\)。

稍微解释一下这个 \(dp\) 方程,\(g_{i-1,j-m-1}\) 表示在序列末尾新增添一个 \(m+1\),\(g_{i,j-i}\) 表示将序列中所有数 \(+1\),由于我们得到的序列是单调递减的,所以一种方案一定恰好对于一种操作序列。

最后是计算答案,枚举 \(\leq m\) 的数和是多少,以及选择了多少个 \(>m\) 的数,可以在 \(\mathcal O(n\sqrt{n})\) 的时间内计算出答案。

总时间复杂度 \(\mathcal O(n\sqrt{n})\)。

感觉有点像 atcoder 风格的题。

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define ffe(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
typedef pair<int,int> pii;
typedef long long ll;
const int MAXN=1e5+5;
const int SQRT=320;
int n,m,p;
int dp[MAXN],f[SQRT][MAXN];
int main(){
scanf("%d%d",&n,&p);m=(int)(sqrt(n));
dp[0]=1;
for(int i=1;i<=m;i++){
for(int j=i;j<=n;j++) dp[j]=(dp[j]+dp[j-i])%p;
}
f[0][0]=1;
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
if(j>=i) f[i][j]=f[i][j-i];
if(j>=m+1) f[i][j]=(f[i][j]+f[i-1][j-m-1])%p;
}
}
int ans=0;
for(int i=0;i<=n;i++) for(int j=0;j<=m;j++)
ans=(ans+1ll*dp[i]*f[j][n-i])%p;
printf("%d\n",ans);
return 0;
}

洛谷 P6189 - [NOI Online #1 入门组]跑步(根号分治+背包)的更多相关文章

  1. P6189 [NOI Online #1 入门组] 跑步 (DP/根号分治)

    (才了解到根号分治这样的妙方法......) 将每个数当成一种物品,最终要凑成n,这就是一个完全背包问题,复杂度O(n2),可以得80分(在考场上貌似足够了......) 1 #include < ...

  2. 洛谷 P6570 - [NOI Online #3 提高组] 优秀子序列(集合幂级数+多项式)

    洛谷题面传送门 首先 \(3^n\) 的做法就不多说了,相信对于会状压 dp+会枚举子集的同学来说不算困难(暴论),因此这篇博客将着重讲解 \(2^nn^2\) 的做法. 首先如果我们把每个 \(a_ ...

  3. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  4. 洛谷 P6478 - [NOI Online #2 提高组] 游戏(二项式反演+树形 dp)

    题面传送门 没错这就是我 boom0 的那场 NOIOL 的 T3 一年前,我在 NOIOL #2 的赛场上折戟沉沙,一年后,我从倒下的地方爬起. 我成功了,我不再是从前那个我了 我们首先假设 A 拥 ...

  5. P6474 [NOI Online #2 入门组] 荆轲刺秦王

    P6474 [NOI Online #2 入门组] 荆轲刺秦王 bfs+差分+卡常 本来我其实是场内选手,但是因为记错提交时间,晚了半小时才交,交不上了,就自动降级为了场外选手 题面复杂,不简述了 首 ...

  6. 洛谷P1003 铺地毯 noip2011提高组day1T1

    洛谷P1003 铺地毯 noip2011提高组day1T1 洛谷原题 题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n ...

  7. P7473 [NOI Online 2021 入门组] 重力球

    P7473 [NOI Online 2021 入门组] 重力球 题意 给你一个正方形平面,某些位置有障碍,对于平面上两个球,每次你可以改变重力方向使两个球下落到最底端,求使两个球位置重合的最小改变重力 ...

  8. [NOI 2020 Online] 入门组T1 文具采购(洛谷 P6188)题解

    原题传送门 题目部分:(来自于考试题面,经整理) [题目描述] 小明的班上共有 n 元班费,同学们准备使用班费集体购买 3 种物品: 1.圆规,每个 7 元. 2.笔,每支 4 元. 3.笔记本,每本 ...

  9. 洛谷P1371 NOI元丹

    P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交  讨论  题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...

随机推荐

  1. (课内)信安数基RSA-level3-5

    emmmm感觉其实自己对这个的理解完全不够,原理只能写出这么个东西(悲) 代码完全是 攻击方式中(1)(2)内容的实现. lambda是一种可以理解为匿名函数的写法:写在这里看起来很酷炫(bushi) ...

  2. Prometheus的单机部署

    Prometheus的单机部署 一.什么是Prometheus 二.Prometheus的特性 三.支持的指标类型 1.Counter 计数器 2.Gauge 仪表盘 3.Histogram 直方图 ...

  3. websocket入门案例(echo)

    websocket是用来干什么的,具体的请自行百度. 本文实现一个简单的websocket的入门小例子,实现客户端发送一句换,服务器端返回.即一个简单的交互. 一.服务器端的实现 1.创建一个类实现S ...

  4. Spring Cloud Gateway Route Predicate Factory 的使用

    Spring Cloud Gateway的使用 一.需求 二.基本组成 1.简介 2.核型概念 1.Route 路由 2.Predicate 谓语.断言 3.Filter 过滤器 3.工作原理 三.网 ...

  5. 详解DNS域名解析系统(域名、域名服务器[根、顶级、授权/权限、本地]、域名解析过程[递归与迭代])

    文章转自:https://blog.csdn.net/weixin_43914604/article/details/105583806 学习课程:<2019王道考研计算机网络> 学习目的 ...

  6. 计算机网络传输层之TCP可靠传输

    文章转自:https://blog.csdn.net/weixin_43914604/article/details/105524592 学习课程:<2019王道考研计算机网络> 学习目的 ...

  7. Android DataBinding使用详解

    简介 DataBinding是一个自动绑定UI的框架. 使用DataBinding需要在app根目录的build.gradle文件中加入DataBinding配置: android { .... da ...

  8. Myod 选做

    一.题目要求 1.复习c文件处理内容 2.编写myod.c 用myod XXX实现Linux下od -tc -tx XXX的功能 3.main与其他分开,制作静态库和动态库 4.编写Makefile ...

  9. python pip whl安装和使用

    转载:https://www.cnblogs.com/klb561/p/9271322.html 1 python的安装 首先,从python的官方网站 www.python.org下载需要的pyth ...

  10. C# 如何将日期格式化ISO8601模式

    类似于这样的时间戳格式:预计来访时间,时间参数需满足ISO8601格式:yyyy-MM-ddTHH:mm:ss+当前时区,例如北京时间:2018-07-26T15:00:00 + 08:00 stri ...