题目传送门

题意简述:给出大小为 \(n\) 的字典 \(s\)。设函数 \(g(t)\) 表示 \(t\) 最多能被分割成的单词个数。等概率随机生成长度为 \(len\) 的字符串 \(T\),求 \(E(g(t))\)。

在 Luogu 博客中查看

hot tea. 比较像 P3193 [HNOI2008]GT考试

DP 大锅乱炖 & ACAM 乱做


首先对 \(s_i\) 建出 ACAM,然后在上面 DP。设 \(f_{i,j}\) 表示关于所有 \(T\)(\(|T|=i\) 且 \(T\) 在 ACAM 上能跑到状态 \(j\))的一个东西。那么究竟是表示什么呢?

记 \(P=\dfrac{f_{i,j}}{a}\);\(p\) 为 \(j\) 的所有子节点,即 \(p\in son_j\)。

错误思路:如果 \(f_{i,j}\) 单纯表示字符串 \(T\) 的 “概率”(即 \(\dfrac{num(T)}{a^i}\)),那么转移与统计答案就是:如果 \(p\) 是终止节点,将 \(ans\) 加上 \(P\);同时将所有 \(f_{i+1,p}\) 加上 \(P\)。不错,如果 \(g(T)\) 表示的是所有单词 \(s_i\) 在 \(T\) 中出现次数之和,那么这样是没错的,可惜不是,因为会有重复计算,即若字典 \(s=\{\texttt{ab,bc}\}\),那么 \(T=\{\texttt{abc}\}\) 会算入两次贡献(样例中也有提到这种情况)。

正确思路:注意到这个 "最多" 有点麻烦,不过还是有处理的办法:如果 \(p\) 是一个终止节点,那么在下传概率的时候,将 \(f_{i+1,0}\)(而不是 \(f_{i+1,p}\))加上 \(P\)。如果成功匹配一个单词,就必须从头开始匹配。

注意到 \(\sum |s_i|\) 很小,只有 \(75\)。这也意味着 \(j\) 的范围只有 \(75\)。因此,用矩阵快速幂加速 DP 即可,别忘了在矩阵中留个位置记录 \(ans\)。

总时间复杂度 \(\mathcal{O}((\sum |s_i|)^3\log len)\)。

  1. /*
  2. Powered by C++11.
  3. Author : Alex_Wei.
  4. */
  5. #include <bits/stdc++.h>
  6. using namespace std;
  7. //#pragma GCC optimize(3)
  8. //#define int long long
  9. using ld = long double;
  10. const int N=77;
  11. const int S=26;
  12. int sz,al,son[N][S],fa[N],ed[N];
  13. void ins(string s){
  14. int p=0;
  15. for(char it:s){
  16. if(!son[p][it-'a'])son[p][it-'a']=++sz;
  17. p=son[p][it-'a'];
  18. } ed[p]=1;
  19. }
  20. void build(){
  21. queue <int> q;
  22. for(int i=0;i<al;i++)if(son[0][i])q.push(son[0][i]);
  23. while(!q.empty()){
  24. int t=q.front(); q.pop();
  25. for(int i=0;i<al;i++)
  26. if(son[t][i])q.push(son[t][i]),fa[son[t][i]]=son[fa[t]][i];
  27. else son[t][i]=son[fa[t]][i];
  28. ed[t]|=ed[fa[t]];
  29. }
  30. }
  31. struct mat{
  32. ld a[N][N];
  33. friend mat operator * (mat x,mat y){
  34. mat z; mem(z.a,0);
  35. for(int i=0;i<=sz;i++)
  36. for(int j=0;j<=sz;j++)
  37. for(int k=0;k<=sz;k++)
  38. z.a[i][j]+=x.a[i][k]*y.a[k][j];
  39. return z;
  40. }
  41. }base,ans;
  42. int n,len;
  43. int main(){
  44. cin>>n>>len>>al;
  45. for(int i=0;i<n;i++){
  46. string s;
  47. cin>>s,ins(s);
  48. } build();
  49. for(int i=0;i<=sz;i++)
  50. for(int j=0;j<al;j++){
  51. int p=son[i][j];
  52. if(ed[p])base.a[i][0]+=1.0/al,base.a[i][sz+1]+=1.0/al;
  53. else base.a[i][p]+=1.0/al;
  54. }
  55. sz++,ans.a[0][0]=base.a[sz][sz]=1;
  56. while(len){
  57. if(len&1)ans=ans*base;
  58. base=base*base,len>>=1;
  59. } printf("%.10Lf\n",ans.a[0][sz]);
  60. return 0;
  61. }

P4569 [BJWC2011]禁忌的更多相关文章

  1. 洛谷 P4569 - [BJWC2011]禁忌(AC 自动机+矩阵乘法)

    题面传送门 又好久没做过 AC 自动机的题了,做道练练手罢( 首先考虑对于某个固定的字符串怎样求出它的伤害,我们考虑贪心,每碰到出现一个模式串就将其划分为一段,最终该字符串的代价就是划分的次数.具体来 ...

  2. 题解 洛谷 P4569 【[BJWC2011]禁忌】

    考虑用\(AC\)自动机来解决本题这样的多字符串匹配问题. 要最大化魔法分割后得到的禁忌串数目,最优情况肯定为在一个串中每个禁忌串的右端点进行分割.对应到\(AC\)自动机上,就是匹配到一个禁忌串后, ...

  3. BZOJ2553 [BJWC2011]禁忌

    传送门 Description ​ 给你前alphabet个小写字母组成的字符集, 以及n个单词, 定义一个串s的禁忌值为 \(\sum_{i } [s[i] == Taboo[i]]\) , Tab ...

  4. BJWC2011 禁忌

    题目链接 题解 多模式匹配首先建 AC 自动机,看到 \(len \le 10^9\) 想到矩阵乘法优化. 朴素 DP 关于分割的最大值,可以贪心,只要走到一个能匹配串的点立刻返回根继续匹配就行,一定 ...

  5. [BJWC2011]禁忌 AC 自动机 概率与期望

    #include<cstdio> #include<algorithm> #include<cstring> #include<string> #inc ...

  6. DP 优化方法大杂烩 & 做题记录 I.

    标 * 的是推荐阅读的部分 / 做的题目. 1. 动态 DP(DDP)算法简介 动态动态规划. 以 P4719 为例讲一讲 ddp: 1.1. 树剖解法 如果没有修改操作,那么可以设计出 DP 方案 ...

  7. ACAM 题乱做

    之前做了不少 ACAM,不过没怎么整理起来,还是有点可惜的. 打 * 的是推荐一做的题目. I. *CF1437G Death DBMS 见 我的题解. II. *CF1202E You Are Gi ...

  8. 「刷题笔记」AC自动机

    自动AC机 Keywords Research 板子题,同luoguP3808,不过是多测. 然后多测不清空,\(MLE\)两行泪. 板子放一下 #include<bits/stdc++.h&g ...

  9. [No000052]大蒜怎么吃最美容?吃大蒜的功效及禁忌

    大蒜是最常见的香辛调味料,它被称为天然抗生素,富含大蒜素等多种营养物质和抗氧化剂,具有多种美肤美容作用. 大蒜的5种美容功效 1.除皱.大蒜里的某些成分,有类似维生素E与维生素C的抗氧化.防衰老特性, ...

随机推荐

  1. 更好的 java 重试框架 sisyphus 的 3 种使用方式

    回顾 我们前面学习了 更好的 java 重试框架 sisyphus 入门简介 更好的 java 重试框架 sisyphus 配置的 2 种方式介绍 更好的 java 重试框架 sisyphus 背后的 ...

  2. ThreadLocal部分源码分析

    结构演进 早起JDK版本中,ThreadLocal内部结构是一个Map,线程为key,线程在"线程本地变量"中绑定的值为Value.每一个ThreadLocal实例拥有一个Map实 ...

  3. 【Java虚拟机5】Java内存模型(硬件层面的并发优化基础知识--指令乱序问题)

    前言 其实之前大家都了解过volatile,它的第一个作用是保证内存可见,第二个作用是禁止指令重排序.今天系统学习下为什么CPU会指令重排. 存储器的层次结构图 1.CPU乱序执行指令的根源 CPU读 ...

  4. 极速上手 VUE 3 —— teleport传送门组件

    一.teleport 介绍 teleport 传送门组件,提供一种简洁的方式,可以指定它里面的内容的父元素.通俗易懂地讲,就是 teleport 中的内容允许我们控制在任意的DOM中,使用简单. 使用 ...

  5. 人人都写过的5个Bug!

    大家好,我是良许. 计算机专业的小伙伴,在学校期间一定学过 C 语言.它是众多高级语言的鼻祖,深入学习这门语言会对计算机原理.操作系统.内存管理等等底层相关的知识会有更深入的了解,所以我在直播的时候, ...

  6. 零基础玩转C语言单链表

    下图为最一简单链表的示意图: 第 0 个结点称为头结点,它存放有第一个结点的首地址,它没有数据,只是一个指针变量.以下的每个结点都分为两个域,一个是数据域,存放各种实际的数据,如学号 num,姓名 n ...

  7. 计算机网络之网络层路由选择协议(自治系统AS、RIP、OSPF、BGP)

    文章转自:https://blog.csdn.net/weixin_43914604/article/details/105313629 学习课程:<2019王道考研计算机网络> 学习目的 ...

  8. 决策树 机器学习,西瓜书p80 表4.2 使用信息增益生成决策树及后剪枝

    使用信息增益构造决策树,完成后剪枝 目录 使用信息增益构造决策树,完成后剪枝 1 构造决策树 1 根结点的选择 色泽 信息增益 根蒂 信息增益 敲声 信息增益 纹理 信息增益 脐部 信息增益 触感 信 ...

  9. 机器人的运动范围 牛客网 剑指Offer

    机器人的运动范围 牛客网 剑指Offer 题目描述 地上有一个m行和n列的方格.一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大 ...

  10. cf20B Equation(认真仔细题)

    题意: 求AX^2+BX+C=0的根 思路: 考虑到A,B,C所有可能的情况 代码: double a,b,c; int main(){ cin>>a>>b>>c; ...