P4569 [BJWC2011]禁忌
题意简述:给出大小为 \(n\) 的字典 \(s\)。设函数 \(g(t)\) 表示 \(t\) 最多能被分割成的单词个数。等概率随机生成长度为 \(len\) 的字符串 \(T\),求 \(E(g(t))\)。
hot tea. 比较像 P3193 [HNOI2008]GT考试。
首先对 \(s_i\) 建出 ACAM,然后在上面 DP。设 \(f_{i,j}\) 表示关于所有 \(T\)(\(|T|=i\) 且 \(T\) 在 ACAM 上能跑到状态 \(j\))的一个东西。那么究竟是表示什么呢?
记 \(P=\dfrac{f_{i,j}}{a}\);\(p\) 为 \(j\) 的所有子节点,即 \(p\in son_j\)。
错误思路:如果 \(f_{i,j}\) 单纯表示字符串 \(T\) 的 “概率”(即 \(\dfrac{num(T)}{a^i}\)),那么转移与统计答案就是:如果 \(p\) 是终止节点,将 \(ans\) 加上 \(P\);同时将所有 \(f_{i+1,p}\) 加上 \(P\)。不错,如果 \(g(T)\) 表示的是所有单词 \(s_i\) 在 \(T\) 中出现次数之和,那么这样是没错的,可惜不是,因为会有重复计算,即若字典 \(s=\{\texttt{ab,bc}\}\),那么 \(T=\{\texttt{abc}\}\) 会算入两次贡献(样例中也有提到这种情况)。
正确思路:注意到这个 "最多" 有点麻烦,不过还是有处理的办法:如果 \(p\) 是一个终止节点,那么在下传概率的时候,将 \(f_{i+1,0}\)(而不是 \(f_{i+1,p}\))加上 \(P\)。如果成功匹配一个单词,就必须从头开始匹配。
注意到 \(\sum |s_i|\) 很小,只有 \(75\)。这也意味着 \(j\) 的范围只有 \(75\)。因此,用矩阵快速幂加速 DP 即可,别忘了在矩阵中留个位置记录 \(ans\)。
总时间复杂度 \(\mathcal{O}((\sum |s_i|)^3\log len)\)。
/*
Powered by C++11.
Author : Alex_Wei.
*/
#include <bits/stdc++.h>
using namespace std;
//#pragma GCC optimize(3)
//#define int long long
using ld = long double;
const int N=77;
const int S=26;
int sz,al,son[N][S],fa[N],ed[N];
void ins(string s){
int p=0;
for(char it:s){
if(!son[p][it-'a'])son[p][it-'a']=++sz;
p=son[p][it-'a'];
} ed[p]=1;
}
void build(){
queue <int> q;
for(int i=0;i<al;i++)if(son[0][i])q.push(son[0][i]);
while(!q.empty()){
int t=q.front(); q.pop();
for(int i=0;i<al;i++)
if(son[t][i])q.push(son[t][i]),fa[son[t][i]]=son[fa[t]][i];
else son[t][i]=son[fa[t]][i];
ed[t]|=ed[fa[t]];
}
}
struct mat{
ld a[N][N];
friend mat operator * (mat x,mat y){
mat z; mem(z.a,0);
for(int i=0;i<=sz;i++)
for(int j=0;j<=sz;j++)
for(int k=0;k<=sz;k++)
z.a[i][j]+=x.a[i][k]*y.a[k][j];
return z;
}
}base,ans;
int n,len;
int main(){
cin>>n>>len>>al;
for(int i=0;i<n;i++){
string s;
cin>>s,ins(s);
} build();
for(int i=0;i<=sz;i++)
for(int j=0;j<al;j++){
int p=son[i][j];
if(ed[p])base.a[i][0]+=1.0/al,base.a[i][sz+1]+=1.0/al;
else base.a[i][p]+=1.0/al;
}
sz++,ans.a[0][0]=base.a[sz][sz]=1;
while(len){
if(len&1)ans=ans*base;
base=base*base,len>>=1;
} printf("%.10Lf\n",ans.a[0][sz]);
return 0;
}
P4569 [BJWC2011]禁忌的更多相关文章
- 洛谷 P4569 - [BJWC2011]禁忌(AC 自动机+矩阵乘法)
题面传送门 又好久没做过 AC 自动机的题了,做道练练手罢( 首先考虑对于某个固定的字符串怎样求出它的伤害,我们考虑贪心,每碰到出现一个模式串就将其划分为一段,最终该字符串的代价就是划分的次数.具体来 ...
- 题解 洛谷 P4569 【[BJWC2011]禁忌】
考虑用\(AC\)自动机来解决本题这样的多字符串匹配问题. 要最大化魔法分割后得到的禁忌串数目,最优情况肯定为在一个串中每个禁忌串的右端点进行分割.对应到\(AC\)自动机上,就是匹配到一个禁忌串后, ...
- BZOJ2553 [BJWC2011]禁忌
传送门 Description 给你前alphabet个小写字母组成的字符集, 以及n个单词, 定义一个串s的禁忌值为 \(\sum_{i } [s[i] == Taboo[i]]\) , Tab ...
- BJWC2011 禁忌
题目链接 题解 多模式匹配首先建 AC 自动机,看到 \(len \le 10^9\) 想到矩阵乘法优化. 朴素 DP 关于分割的最大值,可以贪心,只要走到一个能匹配串的点立刻返回根继续匹配就行,一定 ...
- [BJWC2011]禁忌 AC 自动机 概率与期望
#include<cstdio> #include<algorithm> #include<cstring> #include<string> #inc ...
- DP 优化方法大杂烩 & 做题记录 I.
标 * 的是推荐阅读的部分 / 做的题目. 1. 动态 DP(DDP)算法简介 动态动态规划. 以 P4719 为例讲一讲 ddp: 1.1. 树剖解法 如果没有修改操作,那么可以设计出 DP 方案 ...
- ACAM 题乱做
之前做了不少 ACAM,不过没怎么整理起来,还是有点可惜的. 打 * 的是推荐一做的题目. I. *CF1437G Death DBMS 见 我的题解. II. *CF1202E You Are Gi ...
- 「刷题笔记」AC自动机
自动AC机 Keywords Research 板子题,同luoguP3808,不过是多测. 然后多测不清空,\(MLE\)两行泪. 板子放一下 #include<bits/stdc++.h&g ...
- [No000052]大蒜怎么吃最美容?吃大蒜的功效及禁忌
大蒜是最常见的香辛调味料,它被称为天然抗生素,富含大蒜素等多种营养物质和抗氧化剂,具有多种美肤美容作用. 大蒜的5种美容功效 1.除皱.大蒜里的某些成分,有类似维生素E与维生素C的抗氧化.防衰老特性, ...
随机推荐
- 什么是js事件,冒泡机制,事件捕获,默认行为
js事件: javascript使我们能够有能力创建动态页面,事件就是可以被js侦测到的行为,网页中每个元素都可以产生某些触发js函数的事件. 例如我们可以在用户点击某个按钮时产生一个click事件来 ...
- Go语言核心36讲(Go语言进阶技术六)--学习笔记
12 | 使用函数的正确姿势 在前几期文章中,我们分了几次,把 Go 语言自身提供的,所有集合类的数据类型都讲了一遍,额外还讲了标准库的container包中的几个类型. 在几乎所有主流的编程语言中, ...
- Scrum Meeting 0505
零.说明 日期:2021-5-5 任务:简要汇报两日内已完成任务,计划后两日完成任务 一.进度情况 组员 负责 两日内已完成的任务 后两日计划完成的任务 qsy PM&前端 完成邮箱注册页面功 ...
- UltraSoft - Alpha - 测试报告
遇到的bug bug:在vue.config.js里配置proxy,并修改请求的url后仍无法连接到后端. 解决: url最后忘了'/',导致和后端不匹配,会有404.500等错误. 后端服务未打开或 ...
- 2020BUAA软工个人博客作业-软件案例分析
2020BUAA软工个人博客作业-软件案例分析 17373010 杜博玮 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 个人博客作业-软件案例分 ...
- RF运行之后控制信息日志显示乱码(解决方法)
RIDE运行自动化测试案例时,控制台信息显示乱码,如下所示: 解决方法:进入到python的安装路径下:D:\python37\Lib\site-packages\robotide\contrib\t ...
- 基于大量图片与实例深度解析Netty中的核心组件
本篇文章主要详细分析Netty中的核心组件. 启动器Bootstrap和ServerBootstrap作为Netty构建客户端和服务端的路口,是编写Netty网络程序的第一步.它可以让我们把Netty ...
- 基于Mui与H5+开发webapp的Android原生工程打包步骤(使用新版本5+SDK与Android studio)(部分内容转自dcloud官网)
文章背景: dcloud官网给出的打包步骤对于有一定安卓打包基础的同学来说比较容易掌握,但是对于webapp小白来讲有的地方可能没有说的太具体.下面我给大家介绍的详细一点,保证大家按照步骤就能学会打包 ...
- 菜鸡的Java笔记 第二十七 - java 链表基本概念
链表基本概念 1.链表的基本形式 2.单向链表的完整实现 认识链表 链表= 可变长的对象数组,属于动态对象数组的范畴 链表 ...
- 96-00年CPU功耗感知调度研究
最近读了一些1996-2000年的通过调度来降低cpu能耗的文章,主要文章有[1] [2] [3] [4] [5], 简单总结一些该时期单核CPU功耗感知的调度策略. 该时期还出现了很多关于低功耗电路 ...