Kingma D P, Ba J. Adam: A Method for Stochastic Optimization[J]. arXiv: Learning, 2014.

@article{kingma2014adam:,

title={Adam: A Method for Stochastic Optimization},

author={Kingma, Diederik P and Ba, Jimmy},

journal={arXiv: Learning},

year={2014}}

鼎鼎大名.

主要内容

用\(f(\theta)\)表示目标函数, 随机最优通常需要最小化\(\mathbb{E}(f(\theta))\), 但是因为每一次我们都取的是一个小批次, 故实际上我们处理的是\(f_1(\theta),\ldots, f_T(\theta)\). 用\(g_t=\nabla_{\theta}f_t(\theta)\)表示第\(t\)步对应的梯度.

Adam 方法分别估计梯度\(\mathbb{E}(g_t)\)的一阶矩和二阶矩(Adam: adaptive moment estimation 名字的由来).

算法

注意: 下面的算法中关于向量的运算都是逐项(element-wise)的运算.

选择合适的参数

首先, 分析为什么会有

\[\tag{A.1}
\hat{m}_t \leftarrow m_t / (1-\beta_2^t), \\
\hat{v}_t \leftarrow v_t / (1-\beta_2^t).
\]

可以用归纳法证明

\[\tag{A.2}
m_t = (1-\beta_1) \sum_{i=1}^t \beta_1^{t-i} \cdot g_i \\
v_t = (1-\beta_2) \sum_{i=1}^t \beta_2^{t-i} \cdot g_i^2.
\]

倘若分布稳定: \(\mathbb{E}[g_t]=\mathbb{E}[g],\mathbb{E}[g_t^2]=\mathbb{E}[g^2]\), 则

\[\tag{A.3}
\mathbb{E}[m_t]=\mathbb{E}[g] \cdot(1-\beta_1^t) \\
\mathbb{E}[v_t]= \mathbb{E}[g^2] \cdot (1- \beta_2^t).
\]

这就是为什么会有(A.1)这一步.

Adam提出时的一个很大的应用场景就是dropout(正对梯度是稀疏的情况), 这是往往需要我们取较大的\(\beta_2\)(可理解为抵消随机因素).

既然\(\mathbb{E}[g]/\sqrt{\mathbb{E}[g^2]}\le 1\), 我们可以把步长\(\alpha\)理解为一个信赖域(既然\(|\Delta_t| \frac{<}{\approx} a\)).

另外一个很重要的性质是, 比如函数扩大(或缩小)\(c\)倍\(cf\), 此时梯度相应为\(cg\), 我们所对应的

\[\frac{c \cdot \hat{m}_t}{\sqrt{c^2 \cdot \hat{v}_t}}= \frac{\hat{m}_t}{\sqrt{\hat{v}_t}},
\]

并无变化.

一些别的优化算法

AdaGrad:

\[\theta_{t+1} = \theta_t -\alpha \cdot \frac{1}{\sqrt{\sum_{i=1}^tg_t^2}+\epsilon} g_t.
\]

RMSprop:

\[v_t = \beta_2 v_{t-1} + (1-\beta_2) g_t^2 \\
\theta_{t+1} = \theta_t -\alpha \cdot \frac{1}{\sqrt{v_t+\epsilon}}g_t.
\]

AdaDelta:

\[v_t = \beta_2 v_{t-1} + (1-\beta_2) g_t^2 \\
\theta_{t+1} = \theta_t -\alpha \cdot \frac{\sqrt{m_{t-1}+\epsilon}}{\sqrt{v_t+\epsilon}}g_t \\
m_t = \beta_1 m_{t-1}+(1-\beta_1)[\theta_{t+1}-\theta_t]^2.
\]

注: 均为逐项

AdaMax

本文还提出了另外一种算法





理论

不想谈了, 感觉证明有好多错误.

代码



import numpy as np

class Adam:

    def __init__(self, instance, alpha=0.001, beta1=0.9, beta2=0.999,
epsilon=1e-8, beta_decay=1., alpha_decay=False):
""" the Adam using numpy
:param instance: the theta in paper, should have the grad method to call the grads
and the zero_grad method for clearing the grads
:param alpha: the same as the paper default:0.001
:param beta1: the same as the paper default:0.9
:param beta2: the same as the paper default:0.999
:param epsilon: the same as the paper default:1e-8
:param beta_decay:
:param alpha_decay: default False, if True, we will set alpha = alpha / sqrt(t)
"""
self.instance = instance
self.alpha = alpha
self.beta1 = beta1
self.beta2 = beta2
self.epsilon = epsilon
self.beta_decay = beta_decay
self.alpha_decay = alpha_decay
self.initialize_paras() def initialize_paras(self):
self.m = 0.
self.v = 0.
self.timestep = 0 def update_paras(self):
grads = self.instance.grad
self.beta1 *= self.beta_decay
self.beta2 *= self.beta_decay
self.m = self.beta1 * self.m + (1 - self.beta1) * grads
self.v = self.beta2 * self.v + (1 - self.beta2) * grads ** 2
self.timestep += 1
if self.alpha_decay:
return self.alpha / np.sqrt(self.timestep)
return self.alpha def zero_grad(self):
self.instance.zero_grad() def step(self):
alpha = self.update_paras()
betat1 = 1 - self.beta1 ** self.timestep
betat2 = 1 - self.beta2 ** self.timestep
temp = alpha * np.sqrt(betat2) / betat1
self.instance.parameters -= temp * self.m / (np.sqrt(self.v) + self.epsilon) class PPP: def __init__(self, parameters, grad_func):
self.parameters = parameters
self.zero_grad()
self.grad_func = grad_func def zero_grad(self):
self.grad = np.zeros_like(self.parameters) def calc_grad(self):
self.grad += self.grad_func(self.parameters) def f(x):
return x[0] ** 2 + 5 * x[1] ** 2 def grad(x):
return np.array([2 * x[0], 100 * x[1]]) if __name__ == "__main__": x = np.array([10., 10.])
x = PPP(x, grad)
xs = []
ys = []
optim = Adam(x, alpha=0.4)
for i in range(100):
xs.append(x.parameters.copy())
y = f(x.parameters)
ys.append(y)
optim.zero_grad()
x.calc_grad()
optim.step()
xs = np.array(xs)
ys = np.array(ys)
import matplotlib.pyplot as plt
fig, (ax0, ax1)= plt.subplots(1, 2)
ax0.plot(xs[:, 0], xs[:, 1])
ax0.scatter(xs[:, 0], xs[:, 1])
ax0.set(title="trajectory", xlabel="x", ylabel="y")
ax1.plot(np.arange(len(ys)), ys)
ax1.set(title="loss-iterations", xlabel="iterations", ylabel="loss")
plt.show()

ADAM : A METHOD FOR STOCHASTIC OPTIMIZATION的更多相关文章

  1. Stochastic Optimization Techniques

    Stochastic Optimization Techniques Neural networks are often trained stochastically, i.e. using a me ...

  2. TensorFlow 深度学习笔记 Stochastic Optimization

    Stochastic Optimization 转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到I ...

  3. Stochastic Optimization of PCA with Capped MSG

    目录 Problem Matrix Stochastic Gradient 算法(MSG) 步骤二(单次迭代) 单步SVD \(project()\)算法 \(rounding()\) 从这里回溯到此 ...

  4. (转) An overview of gradient descent optimization algorithms

    An overview of gradient descent optimization algorithms Table of contents: Gradient descent variants ...

  5. PyTorch-Adam优化算法原理,公式,应用

    概念:Adam 是一种可以替代传统随机梯度下降过程的一阶优化算法,它能基于训练数据迭代地更新神经网络权重.Adam 最开始是由 OpenAI 的 Diederik Kingma 和多伦多大学的 Jim ...

  6. An overview of gradient descent optimization algorithms

    原文地址:An overview of gradient descent optimization algorithms An overview of gradient descent optimiz ...

  7. Adam优化算法

    Question? Adam 算法是什么,它为优化深度学习模型带来了哪些优势? Adam 算法的原理机制是怎么样的,它与相关的 AdaGrad 和 RMSProp 方法有什么区别. Adam 算法应该 ...

  8. Adam 算法

    简介 Adam 是一种可以替代传统随机梯度下降(SGD)过程的一阶优化算法,它能基于训练数据迭代地更新神经网络权重.Adam 最开始是由 OpenAI 的 Diederik Kingma 和多伦多大学 ...

  9. 从 SGD 到 Adam —— 深度学习优化算法概览(一) 重点

    https://zhuanlan.zhihu.com/p/32626442 骆梁宸 paper插画师:poster设计师:oral slides制作人 445 人赞同了该文章 楔子 前些日在写计算数学 ...

随机推荐

  1. 学习java 7.3

    学习内容:定义类不需要加static 成员方法在多个对象时是可以共用的,而成员变量不可以共用,多个对象指向一个内存时,改变变量的值,对象所在的类中的变量都会改变 成员变量前加private,成员方法前 ...

  2. linux 定时导出sql查询结果文件

    如果想在服务器端生成sql查询结果的txt文件. 大体思路就是: 1.创建一个到处txt文件的sql脚本. set ARRAYSIZE 50 --从数据库往客户端一次发送记录数 set linesiz ...

  3. App内容分享

    1.发送文本内容 发送简单的数据到其他应用,比如社交分分享的内容,意图允许用户快速而方便的共享信息. //分享简单的文本内容 public void btnShareText(View view) { ...

  4. Linux磁盘与文件系统原理

    这一章主要是原理性的,介绍了Linux文件系统的运作原理.涉及到很多计算机组成和操作系统的原理性知识,这部分知识很多都忘了,在这里复习下.    我们只看本章第1,2节.--------------- ...

  5. 一个统计 CPU 内存 硬盘 使用率的shell脚本

    一个统计 CPU 内存 硬盘 使用率的shell脚本,供大家学习参考 #!/bin/bash #This script is use for describle CPU Hard Memery Uti ...

  6. 统计网卡流量的两段shell脚本(使用ifconfig)

    一个很小巧的shell脚本,使用ifconfig的不间断输出来统计网卡的流量,有需要的朋友可以参考下 使用shell脚本计算Linux网卡流量,方法中最关键点: ifconfig $eth_name ...

  7. 莫烦python教程学习笔记——使用波士顿数据集、生成用于回归的数据集

    # View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...

  8. Jenkins监控

    目录 一.Monitoring插件 二.Prometheus监控 一.Monitoring插件 Monitoring插件(monitoring)使用JavaMelody,对Jenkins进行监控.插件 ...

  9. SQLserver 2014 如何使用Datename()函数获取对应时间

    一.在本文中,GetDate()获得的日期由两部分组成,分别是今天的日期和当时的时间: Select GetDate() 二.用DateName()就可以获得相应的年.月.日,然后再把它们连接起来就可 ...

  10. 进程(process)和线程(thread)

    来源:阮一峰 进程(process)和线程(thread)是操作系统的基本概念,但是它们比较抽象,不容易掌握. 其实做一个很好的类比,就可以把它们解释地清晰易懂. 1.计算机的核心是CPU,它承担了所 ...