CF1041B Buying a TV Set 题解
Content
给定四个数 \(a,b,c,d\),求满足以下条件的数对 \((x,y)\) 的个数:
- \(x\leqslant a,y\leqslant b\)。
- \(\dfrac{x}{y}=\dfrac{c}{d}\)。
数据范围:\(1\leqslant a,b,c,d\leqslant 10^{18}\)。
Solution
众所周知,数据范围很大的话一般就得要推结论了。
我们先把这个 \(\dfrac{c}{d}\) 化简一下,假设是 \(\dfrac{c'}{d'}\)。由于很明显,\(x,y\) 显然要分别是 \(c',d'\) 的倍数,所以设 \(x=k_1c',y=k_2d'\),那么我们由上面的条件:
\(x\leqslant a,y\leqslant b\)
\(\Rightarrow k_1c'\leqslant a,k_2d'\leqslant b\)
\(\Rightarrow k_1\leqslant \dfrac{c'}{a},k_2\leqslant \dfrac{d'}{b}\)
又因为 \(\dfrac{x}{y}=\dfrac{c'}{d'}\)
所以 \(\dfrac{c'}{x}=\dfrac{d'}{y}\)
那么就只能够从 \(k_1,k_2\) 中取较小值了。因此答案就是 \(\min\{\dfrac{c'}{a},\dfrac{d'}{b}\}\)。
Code
long long a, b, c, d;
int main() {
scanf("%lld%lld%lld%lld", &a, &b, &c, &d);
long long gcdcd = __gcd(c, d);
c /= gcdcd, d /= gcdcd;
printf("%lld", min(a / c, b / d));
}
CF1041B Buying a TV Set 题解的更多相关文章
- codeforces round#509
博主水平不高, 只能打完$4$题, QAQ什么时候才能变强啊嘤嘤嘤 订正完6题了, 还想打今天下午的CF , 只能迟十分钟了, 掉分预定 A. Heist 输出 $max - min + n - 1 ...
- Codeforces Round #509 (Div. 2)
咕咕咕了好多天终于有时间写篇博客了_(:з」∠)_ 打网赛打到自闭的一周,终于靠这场CF找回了一点信心... 1041A - Heist \(ans=max\left \{ a_i \right \} ...
- CF Round #509 (Div. 2)
前言:第一次打\(CF\),因为经验不足以及英语水平很烂,即便在机房大佬的带领下也是花了好久才读懂题目..\(A\)题直到\(11\)分钟才\(A\),题目一共才做了\(4\)题,太菜了.. A. H ...
- (转) s-video vs. composite video vs. component video 几种视频格式详细说明和比较
之前对着几种视频格式认识不是很清晰,所以看数据手册的时候,看的也是稀里糊涂的. 因为项目中需要用到cvbs做视频输入,在元器件选型上,看到tw2867的数据手册上,有这么一句话: The TW2867 ...
- 2018-2019 ACM-ICPC, NEERC, Southern Subregional Contest, Qualification Stage(11/12)
2018-2019 ACM-ICPC, NEERC, Southern Subregional Contest, Qualification Stage A. Coffee Break 排序之后优先队 ...
- Codeforces GYM 100876 J - Buying roads 题解
Codeforces GYM 100876 J - Buying roads 题解 才不是因为有了图床来测试一下呢,哼( 题意 给你\(N\)个点,\(M\)条带权边的无向图,选出\(K\)条边,使得 ...
- 洛谷 P2918 [USACO08NOV]买干草Buying Hay 题解
P2918 [USACO08NOV]买干草Buying Hay 题目描述 Farmer John is running out of supplies and needs to purchase H ...
- 洛谷 P2983 [USACO10FEB]购买巧克力Chocolate Buying 题解
P2983 [USACO10FEB]购买巧克力Chocolate Buying 题目描述 Bessie and the herd love chocolate so Farmer John is bu ...
- 题解 CF1097F 【Alex and a TV Show】
妙妙题-- 这道题这要求%2的个数,肯定有什么性质 于是我们想到了用\(bitset\)来处理 由于三操作有\(gcd\),于是我们又想到用反演来解决 我们回忆一下反演的柿子 设\(f(x)\)为x出 ...
随机推荐
- vagrant创建centos7后虚拟机磁盘爆满
1.问题现象 使用df -h命令,磁盘占用直接99%,明明啥也没干... 2.解决方案 找到C:\Users\你的用户名\.vagrant.d\boxes\centos7\0\virtualbox目 ...
- html+css第七篇-表格
表格标签: table 表格 thead 表格头 tbody 表格主体 tfoot 表格尾 tr 表格行 th 元素定义表头 td 元素定义表格单元 表格样式重置 table{border-colla ...
- CSS 基础 - Cascade and Inheritance
CSS 基础 - Cascade and Inheritance MDN学习笔记:https://developer.mozilla.org/zh-CN/docs/Learn/CSS/Building ...
- Vulnhub-Empire: LupinOne题解
Vulnhub-Empire: LupinOne题解 本靶机为Vulnhub上Empire系列之LupinOne,地址:EMPIRE: LUPINONE 扫描与发现 利用arp-scan命令扫描靶机I ...
- Codeforces 1270H - Number of Components(线段树)
Codeforces 题目传送门 & 洛谷题目传送门 首先需发现一个性质,那就是每一个连通块所对应的是一个区间.换句话说 \(\forall l<r\),若 \(l,r\) 在同一连通块 ...
- Generic recipe for data analysis with general linear model
Generic recipe for data analysis with general linear model Courtesy of David Schneider State populat ...
- Ubuntu Linux安装QT5之旅
1. QT 版本选择 如何选择QT版本,参考如下介绍 https://www.cnblogs.com/chinasoft/p/15226293.html 2. 在此以5.15.0解说 下载QT 版本 ...
- Spark基础:(五)Spark编程进阶
共享变量 (1)累加器:是用来对信息进行聚合的,同时也是Spark中提供的一种分布式的变量机制,其原理类似于mapreduce,即分布式的改变,然后聚合这些改变.累加器的一个常见用途是在调试时对作业执 ...
- Hive(九)【自定义函数】
目录 自定义函数 编程步骤 案例 需求 1.创建工程 2.导入依赖 3.创建类 4.打jar包 5.上传hive所在服务器 6.将jar添加到hive的classpath 7.创建临时函数与开发好的j ...
- Linux学习 - 数值运算
1 declare 声明变量类型 declare [+/-] [选项] 变量名 - 给变量设定类型属性 + 取消变量的类型属性 -i 将变量声明为整数型 -x 将变量声明为环境变量(同export) ...