Content

给定四个数 \(a,b,c,d\),求满足以下条件的数对 \((x,y)\) 的个数:

  • \(x\leqslant a,y\leqslant b\)。
  • \(\dfrac{x}{y}=\dfrac{c}{d}\)。

数据范围:\(1\leqslant a,b,c,d\leqslant 10^{18}\)。

Solution

众所周知,数据范围很大的话一般就得要推结论了。

我们先把这个 \(\dfrac{c}{d}\) 化简一下,假设是 \(\dfrac{c'}{d'}\)。由于很明显,\(x,y\) 显然要分别是 \(c',d'\) 的倍数,所以设 \(x=k_1c',y=k_2d'\),那么我们由上面的条件:

\(x\leqslant a,y\leqslant b\)

\(\Rightarrow k_1c'\leqslant a,k_2d'\leqslant b\)

\(\Rightarrow k_1\leqslant \dfrac{c'}{a},k_2\leqslant \dfrac{d'}{b}\)

又因为 \(\dfrac{x}{y}=\dfrac{c'}{d'}\)

所以 \(\dfrac{c'}{x}=\dfrac{d'}{y}\)

那么就只能够从 \(k_1,k_2\) 中取较小值了。因此答案就是 \(\min\{\dfrac{c'}{a},\dfrac{d'}{b}\}\)。

Code

long long a, b, c, d;

int main() {
scanf("%lld%lld%lld%lld", &a, &b, &c, &d);
long long gcdcd = __gcd(c, d);
c /= gcdcd, d /= gcdcd;
printf("%lld", min(a / c, b / d));
}

CF1041B Buying a TV Set 题解的更多相关文章

  1. codeforces round#509

    博主水平不高, 只能打完$4$题, QAQ什么时候才能变强啊嘤嘤嘤 订正完6题了,  还想打今天下午的CF , 只能迟十分钟了, 掉分预定 A. Heist 输出 $max - min + n - 1 ...

  2. Codeforces Round #509 (Div. 2)

    咕咕咕了好多天终于有时间写篇博客了_(:з」∠)_ 打网赛打到自闭的一周,终于靠这场CF找回了一点信心... 1041A - Heist \(ans=max\left \{ a_i \right \} ...

  3. CF Round #509 (Div. 2)

    前言:第一次打\(CF\),因为经验不足以及英语水平很烂,即便在机房大佬的带领下也是花了好久才读懂题目..\(A\)题直到\(11\)分钟才\(A\),题目一共才做了\(4\)题,太菜了.. A. H ...

  4. (转) s-video vs. composite video vs. component video 几种视频格式详细说明和比较

    之前对着几种视频格式认识不是很清晰,所以看数据手册的时候,看的也是稀里糊涂的. 因为项目中需要用到cvbs做视频输入,在元器件选型上,看到tw2867的数据手册上,有这么一句话: The TW2867 ...

  5. 2018-2019 ACM-ICPC, NEERC, Southern Subregional Contest, Qualification Stage(11/12)

    2018-2019 ACM-ICPC, NEERC, Southern Subregional Contest, Qualification Stage A. Coffee Break 排序之后优先队 ...

  6. Codeforces GYM 100876 J - Buying roads 题解

    Codeforces GYM 100876 J - Buying roads 题解 才不是因为有了图床来测试一下呢,哼( 题意 给你\(N\)个点,\(M\)条带权边的无向图,选出\(K\)条边,使得 ...

  7. 洛谷 P2918 [USACO08NOV]买干草Buying Hay 题解

    P2918 [USACO08NOV]买干草Buying Hay 题目描述 Farmer John is running out of supplies and needs to purchase H ...

  8. 洛谷 P2983 [USACO10FEB]购买巧克力Chocolate Buying 题解

    P2983 [USACO10FEB]购买巧克力Chocolate Buying 题目描述 Bessie and the herd love chocolate so Farmer John is bu ...

  9. 题解 CF1097F 【Alex and a TV Show】

    妙妙题-- 这道题这要求%2的个数,肯定有什么性质 于是我们想到了用\(bitset\)来处理 由于三操作有\(gcd\),于是我们又想到用反演来解决 我们回忆一下反演的柿子 设\(f(x)\)为x出 ...

随机推荐

  1. vagrant创建centos7后虚拟机磁盘爆满

    1.问题现象 使用df -h命令,磁盘占用直接99%,明明啥也没干...  2.解决方案 找到C:\Users\你的用户名\.vagrant.d\boxes\centos7\0\virtualbox目 ...

  2. html+css第七篇-表格

    表格标签: table 表格 thead 表格头 tbody 表格主体 tfoot 表格尾 tr 表格行 th 元素定义表头 td 元素定义表格单元 表格样式重置 table{border-colla ...

  3. CSS 基础 - Cascade and Inheritance

    CSS 基础 - Cascade and Inheritance MDN学习笔记:https://developer.mozilla.org/zh-CN/docs/Learn/CSS/Building ...

  4. Vulnhub-Empire: LupinOne题解

    Vulnhub-Empire: LupinOne题解 本靶机为Vulnhub上Empire系列之LupinOne,地址:EMPIRE: LUPINONE 扫描与发现 利用arp-scan命令扫描靶机I ...

  5. Codeforces 1270H - Number of Components(线段树)

    Codeforces 题目传送门 & 洛谷题目传送门 首先需发现一个性质,那就是每一个连通块所对应的是一个区间.换句话说 \(\forall l<r\),若 \(l,r\) 在同一连通块 ...

  6. Generic recipe for data analysis with general linear model

    Generic recipe for data analysis with general linear model Courtesy of David Schneider State populat ...

  7. Ubuntu Linux安装QT5之旅

    1. QT 版本选择 如何选择QT版本,参考如下介绍 https://www.cnblogs.com/chinasoft/p/15226293.html 2.  在此以5.15.0解说 下载QT 版本 ...

  8. Spark基础:(五)Spark编程进阶

    共享变量 (1)累加器:是用来对信息进行聚合的,同时也是Spark中提供的一种分布式的变量机制,其原理类似于mapreduce,即分布式的改变,然后聚合这些改变.累加器的一个常见用途是在调试时对作业执 ...

  9. Hive(九)【自定义函数】

    目录 自定义函数 编程步骤 案例 需求 1.创建工程 2.导入依赖 3.创建类 4.打jar包 5.上传hive所在服务器 6.将jar添加到hive的classpath 7.创建临时函数与开发好的j ...

  10. Linux学习 - 数值运算

    1 declare 声明变量类型 declare [+/-] [选项] 变量名 - 给变量设定类型属性 + 取消变量的类型属性 -i 将变量声明为整数型 -x 将变量声明为环境变量(同export) ...