正题

题目链接:https://www.luogu.com.cn/problem/AT1983


题目大意

给出\(n\)个数对\((a_i,b_i)\)

\[\sum_{i=1}^n\sum_{j=i+1}^n\binom{a_i+b_i+a_j+b_j}{a_i+a_j}
\]

\(1\leq n\leq 2\times 10^5,1\leq a_i,b_i\leq 2000\)


解题思路

啊遇到这种题目直接上组合意义 \(\color{white}{组合意义天地灭}\)

然后发现\(a_{i},b_i\)很小。上面那个组合数可以变成横着走\(a_i+a_j\)步,竖着走\(b_i+b_j\)步的方案。

之后理解为从\((-a_i,-b_i)\)走到\((a_j,b_j)\)就可以分离\(i,j\)了。

因为很小,直接多起点走一次求和就好了,要减去重复的部分。

时间复杂度\(O(n+max\{a_i\}\times max\{b_i\})\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=2e5+10,M=4500,P=1e9+7;
ll n,a[N],b[N],f[M][M],fac[N],inv[N],ans;
ll C(ll n,ll m)
{return fac[n]*inv[m]%P*inv[n-m]%P;}
signed main()
{
scanf("%lld",&n);inv[1]=1;
for(ll i=2;i<N;i++)inv[i]=P-inv[P%i]*(P/i)%P;
inv[0]=fac[0]=1;
for(ll i=1;i<N;i++)
fac[i]=fac[i-1]*i%P,inv[i]=inv[i-1]*inv[i]%P;
for(ll i=1;i<=n;i++){
scanf("%lld%lld",&a[i],&b[i]);
f[2001-a[i]][2001-b[i]]++;
}
for(ll i=1;i<=4002;i++)
for(ll j=1;j<=4002;j++)
(f[i][j]+=f[i-1][j]+f[i][j-1])%=P;
for(ll i=1;i<=n;i++){
(ans+=f[2001+a[i]][2001+b[i]]%P)%=P;
(ans-=C(2*a[i]+2*b[i],2*a[i]))%=P;
}
printf("%lld\n",(ans+P)*inv[2]%P);
return 0;
}

AT1983-[AGC001E]BBQ Hard【dp,组合数学】的更多相关文章

  1. agc001E - BBQ Hard(dp 组合数)

    题意 题目链接 Sol 非常妙的一道题目. 首先,我们可以把\(C_{a_i + b_i + a_j + b_j}^{a_i + a_j}\)看做从\((-a_i, -b_i)\)走到\((a_j, ...

  2. AtCoder AGC001E BBQ Hard (DP、组合计数)

    题目链接: https://atcoder.jp/contests/agc001/tasks/agc001_e 题解: 求\(\sum^n_{i=1}\sum^n_{j=i+1} {A_i+A_j+B ...

  3. [Agc001E] BBQ Hard

    [Agc001E] BBQ Hard 题目大意 给定\(n\)对正整数\(a_i,b_i\),求\(\sum_{i=1}^{n-1} \sum_{j=i+1}^n \binom{a_i+b_i+a_j ...

  4. CF_229E_Gift_概率DP+组合数学

    CF_229E_Gift_概率DP+组合数学 题目描述: 很久很久以前,一位老人和他的妻子住在蔚蓝的海边.有一天,这位老人前去捕鱼,他捉到了一条活着的金鱼.鱼说:“噢,老渔人!我祈求你放我回到海里,这 ...

  5. [多校联考2019(Round 5 T3)]青青草原的表彰大会(dp+组合数学)

    [多校联考2019(Round 5)]青青草原的表彰大会(dp+组合数学) 题面 青青草原上有n 只羊,他们聚集在包包大人的家里,举办一年一度的表彰大会,在这次的表彰大会中,包包大人让羊们按自己的贡献 ...

  6. [Codeforces722E] Research Rover (dp+组合数学)

    [Codeforces722E] Research Rover (dp+组合数学) 题面 给出一个N*M的方格阵,从(1,1)出发,到(N,M)结束,从(x,y)只能走到(x+1,y)或(x,y+1) ...

  7. [agc001E]BBQ Hard[组合数性质+dp]

    Description 传送门 Solution 题目简化后要求的实际上是$\sum _{i=1}^{n-1}\sum _{j=i+1}^{n}C^{A[i]+A[j]}_{A[i]+A[j]+B[i ...

  8. AGC001 E - BBQ Hard【dp+组合数学】

    首先直接按要求列出式子是\( \sum_{i=1}^{n}\sum_{j=i+1}^{n}C_{a_i+a_j+b_i+b_j}^{a_i+a_j} \) 这样显然过不了,因为ab的数据范围比较小,所 ...

  9. [AGC001E]BBQ Hard 组合数学

    题目描述 Snuke is having another barbeque party. This time, he will make one serving of Skewer Meal. He ...

随机推荐

  1. com 组件的本知识

    (今日看到网络上关于"COM中GUID......"文章,写的好,故记录之.)当初微软设计com规范的时候,有两种选择来保证用户的设计的com组件可以全球唯一:第一种是采用和Int ...

  2. C#中的垃圾回收

  3. DNS地址列表

    DNS测试工具(DNSBench):https://www.grc.com/dns/benchmark.htm DNS列表收集: Google DNS [URL]https://developers. ...

  4. Ajax 与 Struts 1

    Xml配置 <action path="/product/product/validateCurrencyDecimalSupport" type="com.neu ...

  5. Spring之属性注入

    时间:2017-1-31 23:38 --Bean的属性注入方式有三种注入方式:    1)接口注入:        定义一个接口,定义setName(String name)方法,定义一个类,实现该 ...

  6. 深入研究webpack之Tree Shaking相关属性sideEffects用处

    Tree Shaking我原来也只是了解,这次碰巧深入研究了下,就写个博客记录一下,网上有很多讲Tree Shaking的,我写的这篇跟他们侧重点不一样 Tree Shaking相关的基础知识 1 w ...

  7. opencv入门系列教学(六)图像上的算术运算(加法、融合、按位运算)

    0.序言 这一篇博客我们将学习图像的几种算术运算,例如加法,减法,按位运算等. 1.图像加法 我们可以通过OpenCV函数 cv.add() 或仅通过numpy操作 res=img1+img2 res ...

  8. 七、Abp vNext 基础篇丨文章聚合功能下

    介绍 不好意思这篇文章应该早点更新的,这几天在忙CICD的东西没顾得上,等后面整好了CICD我也发2篇文章讲讲,咱们进入正题,这一章来补全剩下的 2个接口和将文章聚合进行完善. 开工 上一章大部分业务 ...

  9. Lucene入门及实际项目应用场景

    导入maven依赖 <dependency> <groupId>org.apache.lucene</groupId> <artifactId>luce ...

  10. Vuex的同步异步存值取值

    1. vue中各个组件之间传值 1.父子组件 父组件-->子组件,通过子组件的自定义属性:props 子组件-->父组件,通过自定义事件:this.$emit('事件名',参数1,参数2, ...