AT1983-[AGC001E]BBQ Hard【dp,组合数学】
正题
题目链接:https://www.luogu.com.cn/problem/AT1983
题目大意
给出\(n\)个数对\((a_i,b_i)\)
求
\]
\(1\leq n\leq 2\times 10^5,1\leq a_i,b_i\leq 2000\)
解题思路
啊遇到这种题目直接上组合意义 \(\color{white}{组合意义天地灭}\)
然后发现\(a_{i},b_i\)很小。上面那个组合数可以变成横着走\(a_i+a_j\)步,竖着走\(b_i+b_j\)步的方案。
之后理解为从\((-a_i,-b_i)\)走到\((a_j,b_j)\)就可以分离\(i,j\)了。
因为很小,直接多起点走一次求和就好了,要减去重复的部分。
时间复杂度\(O(n+max\{a_i\}\times max\{b_i\})\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=2e5+10,M=4500,P=1e9+7;
ll n,a[N],b[N],f[M][M],fac[N],inv[N],ans;
ll C(ll n,ll m)
{return fac[n]*inv[m]%P*inv[n-m]%P;}
signed main()
{
scanf("%lld",&n);inv[1]=1;
for(ll i=2;i<N;i++)inv[i]=P-inv[P%i]*(P/i)%P;
inv[0]=fac[0]=1;
for(ll i=1;i<N;i++)
fac[i]=fac[i-1]*i%P,inv[i]=inv[i-1]*inv[i]%P;
for(ll i=1;i<=n;i++){
scanf("%lld%lld",&a[i],&b[i]);
f[2001-a[i]][2001-b[i]]++;
}
for(ll i=1;i<=4002;i++)
for(ll j=1;j<=4002;j++)
(f[i][j]+=f[i-1][j]+f[i][j-1])%=P;
for(ll i=1;i<=n;i++){
(ans+=f[2001+a[i]][2001+b[i]]%P)%=P;
(ans-=C(2*a[i]+2*b[i],2*a[i]))%=P;
}
printf("%lld\n",(ans+P)*inv[2]%P);
return 0;
}
AT1983-[AGC001E]BBQ Hard【dp,组合数学】的更多相关文章
- agc001E - BBQ Hard(dp 组合数)
题意 题目链接 Sol 非常妙的一道题目. 首先,我们可以把\(C_{a_i + b_i + a_j + b_j}^{a_i + a_j}\)看做从\((-a_i, -b_i)\)走到\((a_j, ...
- AtCoder AGC001E BBQ Hard (DP、组合计数)
题目链接: https://atcoder.jp/contests/agc001/tasks/agc001_e 题解: 求\(\sum^n_{i=1}\sum^n_{j=i+1} {A_i+A_j+B ...
- [Agc001E] BBQ Hard
[Agc001E] BBQ Hard 题目大意 给定\(n\)对正整数\(a_i,b_i\),求\(\sum_{i=1}^{n-1} \sum_{j=i+1}^n \binom{a_i+b_i+a_j ...
- CF_229E_Gift_概率DP+组合数学
CF_229E_Gift_概率DP+组合数学 题目描述: 很久很久以前,一位老人和他的妻子住在蔚蓝的海边.有一天,这位老人前去捕鱼,他捉到了一条活着的金鱼.鱼说:“噢,老渔人!我祈求你放我回到海里,这 ...
- [多校联考2019(Round 5 T3)]青青草原的表彰大会(dp+组合数学)
[多校联考2019(Round 5)]青青草原的表彰大会(dp+组合数学) 题面 青青草原上有n 只羊,他们聚集在包包大人的家里,举办一年一度的表彰大会,在这次的表彰大会中,包包大人让羊们按自己的贡献 ...
- [Codeforces722E] Research Rover (dp+组合数学)
[Codeforces722E] Research Rover (dp+组合数学) 题面 给出一个N*M的方格阵,从(1,1)出发,到(N,M)结束,从(x,y)只能走到(x+1,y)或(x,y+1) ...
- [agc001E]BBQ Hard[组合数性质+dp]
Description 传送门 Solution 题目简化后要求的实际上是$\sum _{i=1}^{n-1}\sum _{j=i+1}^{n}C^{A[i]+A[j]}_{A[i]+A[j]+B[i ...
- AGC001 E - BBQ Hard【dp+组合数学】
首先直接按要求列出式子是\( \sum_{i=1}^{n}\sum_{j=i+1}^{n}C_{a_i+a_j+b_i+b_j}^{a_i+a_j} \) 这样显然过不了,因为ab的数据范围比较小,所 ...
- [AGC001E]BBQ Hard 组合数学
题目描述 Snuke is having another barbeque party. This time, he will make one serving of Skewer Meal. He ...
随机推荐
- Unity遮罩之Mask、RectMask2D与Sprite Mask适用场景分析
遮罩,顾名思义是一种可以掩盖其它元素的控件.常用于修改其它元素的外观,或限制元素的形状.比如ScrollView或者圆头像效果都有用到遮罩功能.本系列文章希望通过阅读UGUI源码的方式,来探究遮罩的实 ...
- C# 高级进阶(一)
产品是怎样开发出来的 首先了解--产品MVP(Minimum Viable Product)的概念 最小可行产品--意思即开发最初应该是根据参品预期,最快构建出一个符合预期可行的功能合集,后期再通过用 ...
- 【java文件处理】java项目路径下的文件下载处理
1. controller类: package com.neo.controller; import javax.servlet.http.HttpServletResponse; import or ...
- centos7 添加磁盘到/(根目录下),扩展VG卷和lv
转载自:http://blog.itpub.net/25469263/viewspace-2662215/ centos7中使用vg方式扩充root分区 1.创建pv fdisk /dev/sdb 输 ...
- Linux常用命令(二)之权限管理、文件搜索、帮助、压缩命令及管道
在(一)中提到过rwx的含义,但是我们还需深入理解,明白其真正的含义和权限,对于文件和目录,rwx权限是不同的,尤其是目录的权限往往是被忽略的: 对于目录,其权限和对应的操作: r-ls w-touc ...
- element-ui 用 el-checkbox-group 做权限管理
template <el-checkbox-group v-model="menu_ide" v-for="(item,index) in menu_idss&qu ...
- mybaits源码分析--事务管理(八)
一.事务管理 写到这也快进入收尾阶段了了,在介绍MyBatis中的事务管理时不可避免的要接触到DataSource的内容,所以接下来会分别来介绍DataSource和Transaction两块内容. ...
- C# 爬虫框架实现 流程_爬虫结构/原理
目录链接:C# 爬虫框架实现 概述 首先需要讲的是,爬虫的原理.其实在我看来,爬虫只是用来解决以下四个问题的工具: 提取哪些网页 提取网页上的哪些内容 存储到哪里(推荐数据库/开源类/Console) ...
- 痞子衡嵌入式:MCUXpresso IDE下将关键函数重定向到RAM中执行的几种方法
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是MCUXpresso IDE下将关键函数重定向到RAM中执行的几种方法. 前段时间痞子衡写了一篇 <在IAR开发环境下将关键函数重 ...
- Selenium系列(十七) - Web UI 自动化基础实战(4)
如果你还想从头学起Selenium,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1680176.html 其次,如果你不懂前端基础知识, ...