\(\mathcal{Description}\)

  Link.

  初始有一个有向图 \(G=(V,E)\),\(V=\{s,t\}\),\(E=\langle s,t\rangle\),一次操作定义为取任意 \(\langle u,v\rangle\in E\),设 \(w\) 为一个新结点,则令 \(V=V\cup\{w\}\),\(E=E\cup \{\langle u,w\rangle,\langle w,v\rangle\}\)。现进行 \(n\) 次操作,求最终有多少个本质不同的 \(G\),满足 \(\operatorname{cut}(s,t)=m\),答案对 \((10^9+7)\) 取模。

  \(G\) 与 \(G'\) 本质相同:存在一个 \(s,t\) 均为不动点的 \(f:V_G\rightarrow V_{G'}\),使得 \(f\) 作用于 \(G\) 后有 \(E_G=E_{G'}\)。

  \(n,m\le50\)。

\(\mathcal{Solution}\)

  灵性的 DP 神题。

  我们称一次选取 \(\langle u,v\rangle\) 边的操作为对 \(\langle u,v\rangle\) 的扩展

  令 \(f(i,j)\) 表示 \(i\) 次操作使原图最大流为 \(j\) 的方案数,可见 \(f(n,m)\) 为答案;同时令 \(F(i,j)\) 为其第二维后缀和,即 \(F(i,j)=\sum_{k\ge j}f(i,j)\)。

  然后不难发现完全转移不了。 再令 \(g(i,j)\) 表示对于任意边 \(\langle u,v\rangle\),\(i\) 次操作,扩展且仅扩展 \(\langle u,v\rangle\) 一次,使得 \(u\) 到 \(v\) 的最大流增加 \(j\)(变为 \(j+1\))的方案数;同理定义 \(G(i,j)\)。注意 \(g\) 与 \(f\) 的区别,例如对于下图中的 <绿点, 红点>:

上图的方案都是 \(g(3,1)\) 所包含的,而

都不是 \(g(4,3)\) 所包含的,因为它们都扩展了 <绿点, 蓝点> 这条边多于一次。

  接着考虑 \(f\) 与 \(g\) 的关系,有

\[G(i,j)=\sum_{k\in[0,i)}F(k,j)F(i-k-1,j)
\]

即,先用一次操作扩展初始的 \(\langle u,v\rangle\),此后 \(\langle u,w\rangle,\langle w,v\rangle\) 都成为 \(f\) 的子问题,只要使两者的最大流同时不小于 \(j\),则 \(u\) 到 \(v\) 增加的流也不小于 \(j\)。并且由于 \(u,v\) 在映射中不动,所有方案均本质不同。

  难点在于对 \(f\) 的转移。我们要选取若干个 \(g\) 作用在初始的 \(\langle s,t\rangle\),形成最终的图 \(G\),同时保证方案本质不同。即,找到 \(g(i_1,j_1,),g(i_2,j_2),\cdots,g(i_s,j_s)\),使得 \(\sum i=n\) 且 \(\sum j=m-1\)(\(s\) 到 \(t\) 本身就有 \(1\) 的流)。那么,在转移过程中,仅需考虑在选择方案的末尾加入 \(k\) 个当前的 \(g(i,j)\),\(k\) 个 \(g(i,j)\) 内部的方案用隔板法可知为 \(\binom{g(i,j)+k}{k}\),再乘上原有方案数即可。因为不同 \(g\) 之间钦定无序,相同 \(g\) 之间隔板法保证无序,故方案无序,即本质不同。

  到此,复杂度 \(\mathcal O(n^4\ln n)\),瓶颈在于枚举“\(k\) 个当前的 \(g(i,j)\)”。

\(\mathcal{Code}\)

  代码中 f[][] 对应 \(F\),g[][] 对应 \(G\),h[][] 对应稍作下标移动的 \(f\)。

/* Clearink */

#include <cstdio>

#define rep( i, l, r ) for ( int i = l, repEnd##i = r; i <= repEnd##i; ++i )
#define per( i, r, l ) for ( int i = r, repEnd##i = l; i >= repEnd##i; --i ) const int MAXN = 50, MOD = 1e9 + 7;
int n, m, ifac[MAXN + 5]; inline int imin( const int a, const int b ) { return a < b ? a : b; }
inline int mul( const long long a, const int b ) { return a * b % MOD; }
inline int sub( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline void subeq( int& a, const int b ) { ( a -= b ) < 0 && ( a += MOD ); }
inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline void addeq( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD ); }
inline int mpow( int a, int b ) {
int ret = 1;
for ( ; b; a = mul( a, a ), b >>= 1 ) ret = mul( ret, b & 1 ? a : 1 );
return ret;
} inline void init() {
int& t = ifac[MAXN] = 1;
rep ( i, 1, MAXN ) t = mul( t, i );
t = mpow( t, MOD - 2 );
per ( i, MAXN - 1, 0 ) ifac[i] = mul( ifac[i + 1], i + 1 );
} int f[MAXN + 5][MAXN + 5], g[MAXN + 5][MAXN + 5], h[MAXN + 5][MAXN + 5]; int main() {
init();
scanf( "%d %d", &n, &m ); f[0][1] = h[0][0] = 1;
rep ( i, 1, n ) {
rep ( j, 1, i + 1 ) {
int& crg = g[i][j];
rep ( k, 0, i - 1 ) {
addeq( crg, mul( f[k][j], f[i - k - 1][j] ) );
}
} rep ( j, 1, i + 1 ) {
int gv = sub( g[i][j], g[i][j + 1] );
per ( a, n, 0 ) per ( b, n + 1, 0 ) {
int crh = 0;
for ( int k = 0, si = 0, sj = 0, up = 1;
si <= a && sj <= b; ++k, si += i, sj += j ) { addeq( crh, mul( h[a - si][b - sj], mul( up, ifac[k] ) ) );
up = mul( up, add( gv, k ) );
}
h[a][b] = crh;
}
} per ( j, i + 1, 1 ) {
f[i][j] = add( h[i][j - 1], f[i][j + 1] );
}
} printf( "%d\n", sub( f[n][m], f[n][m + 1] ) );
return 0;
}

Solution -「CF 848D」Shake It!的更多相关文章

  1. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  2. Solution -「CF 1622F」Quadratic Set

    \(\mathscr{Description}\)   Link.   求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...

  3. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  4. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  5. Solution -「CF 1586F」Defender of Childhood Dreams

    \(\mathcal{Description}\)   Link.   定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...

  6. Solution -「CF 1237E」Balanced Binary Search Trees

    \(\mathcal{Description}\)   Link.   定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...

  7. Solution -「CF 623E」Transforming Sequence

    题目 题意简述   link.   有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...

  8. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

  9. Solution -「CF 599E」Sandy and Nuts

    \(\mathcal{Description}\)   Link.   指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...

随机推荐

  1. 修正了Model1模式,进入如今盛行的的Model2模式,也就是MVC模式

    注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6513668601843548675/ 1.<JSP页面实际上就是Servlet> 2.<JSP页 ...

  2. Lyft 宣布开源基础设施工具管理平台 Clutch!

    今天我们很高兴地宣布,Lyft 的基础设施工具可扩展 UI 和 API 平台clutch已开放源代码,clutch使工程团队能够构建.运行和维护用户友好的工作流,这些工作流还包含特定于域的安全机制和访 ...

  3. dubbo泛化引发的生产故障之dubbo隐藏的坑

    dubbo泛化引发的生产故障之dubbo隐藏的坑 上个月公司zk集群发生了一次故障,然后要求所有项目组自检有无使用Dubbo编程式/泛化调用,强制使用@Reference生成Consumer.具体原因 ...

  4. 【C++】类-基础知识

    类-基础知识 目录 类-基础知识 1. 语法定义 2. 类的实现 3. 三个基本的函数 3.1 构造函数 功能 形式 调用时机 默认构造函数 3.2 复制构造函数 功能 形式 调用时机 3.3 析构函 ...

  5. 使用Hot Chocolate和.NET 6构建GraphQL应用文章索引

    系列背景 在进入微服务的实践系列之前,我们一起来学习和实践一下.NET应用开发生态中一些比较重要的技术,这个系列就是关于GraphQL在.NET 6应用中的实现. 系列导航 使用Hot Chocola ...

  6. 经典面试题:分布式缓存热点KEY问题如何解决--有赞方案

    有赞透明多级缓存解决方案(TMC) 一.引子 1-1. TMC 是什么 TMC ,即"透明多级缓存( Transparent Multilevel Cache )",是有赞 Paa ...

  7. 基于 SSR 的预渲染首屏直出方案

    基于 SSR 的预渲染首屏直出方案 Create React Doc 是一个使用 React 的 markdown 文档站点生成工具.此前在 Create React Doc 中引入了预渲染技术来预先 ...

  8. Android开发之打包apk

    新建一个项目之后写点代码 选择build 之后选择Generate Signed APK (生成签名的APK) 选择create new 填写信息 Generate Signed APK 生成签名的A ...

  9. Nginx请求连接限制

    目录 Nginx的请求限制 HTTP协议的连接与请求 连接限制 配置示例 做个演示: 请求限制 配置示例 基本指令 limit_req_zone limit_req zone 做个演示: Nginx的 ...

  10. 在EntityFrameworkCore中记录EF修改日志,保存,修改字段的原始值,当前值,表名等信息

    突发奇想,想把业务修改的所有字段原始值和修改后的值,做一个记录,然后发现使用EF可以非常简单的实现这个功能 覆盖父类中的 SaveShanges() 方法 public new int SaveCha ...