Solution -「ARC 125F」Tree Degree Subset Sum
\(\mathcal{Description}\)
Link.
给定含有 \(n\) 个结点的树,求非负整数对 \((x,y)\) 的数量,满足存在 \(\exist S\subseteq V,~|S|=x\land\sum_{u\in S}d_u=y\),其中 \(d_u\) 表示点 \(u\) 的度数。
\(n\le2\times10^5\)。
\(\mathcal{Solution}\)
方便期间,以下所有 \(d_u\) 表示 \(u\) 的度数 \(-1\)。
出题人莫名其妙告诉你一棵树,无非是强调 \(\sum d=n-2\),自然想到根号分治。不过朴素 DP 的状态数量就已经难以接受,我们需要更多的结论。
比如这个结论:
结论:若 \(x_1\le x_2\) 且 \((x_1,y),(x_2,y)\) 均合法,那么 \(\forall x_3\in[x_1,x_2],~(x_3,y)\) 也合法。
证明
对于某个 $y$,取出最小 $x_l$ 和最大的 $x_r$,使得 $(x_l,y),(x_r,y)$ 合法。设 $\{d_n\}$ 中有 $z$ 个值为 $0$,则我们只需证明 $x_r-x_l\le 2z$,这是由于 $(x_l,y)$ 的选取中必然不含 $0$,那么 $(x_l+1,y),(x_l+2,y),\cdots,(x_l+z,y)$ 都合法,$(x_r-k,y)$ 同理。
考虑任意一个 \(S\subseteq V\),令 \(d_S=\sum_{u\in S}d_u\),那么
- \(d_S-|S|\ge -z\),显然;
- \(d_S-|S|\le z-2\):\(d_S\le \sum d=n-2\),取等时 \(|S|\ge n-z\),得证。
即 \(-z\le d_S-|S|\le z-2\),考虑将 \((x_l,y)\) 和 \((x_r,y)\) 代入,有 \(-z\le y-x_r\le y-x_l\le z-2\),可以推出 \(x_r-x_l\le 2z-2\),故已有原命题成立。 \(\square\)
所以,我们只需要对于每个 \(y\),DP 求出 \(x_l\) 和 \(x_r\) 就能得到答案。DP 时根号分治,内部用单调队列优化即可。复杂度 \(\mathcal O(n\sqrt n)\)。
\(\mathcal{Code}\)
/*~Rainybunny~*/
#include <bits/stdc++.h>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
typedef long long LL;
const int MAXN = 2e5;
int n, d[MAXN + 5], f[MAXN + 5], g[MAXN + 5];
inline void trans( const int v, const int c, const int r,
int* h, const auto& cmp ) { // cmp(a,b) is true <=> a is the better value.
static int que[MAXN + 5], th[MAXN + 5];
int hd = 1, tl = 0;
for ( int i = r; i <= n - 2; i += v ) {
th[i] = h[i];
while ( hd <= tl && que[hd] + c * v < i ) ++hd;
while ( hd <= tl
&& cmp( th[i] - i / v, th[que[tl]] - que[tl] / v ) ) --tl;
que[++tl] = i;
h[i] = th[que[hd]] + ( i - que[hd] ) / v;
}
}
int main() {
scanf( "%d", &n );
rep ( i, 1, n ) d[i] = -1;
rep ( i, 2, n ) {
int u, v; scanf( "%d %d", &u, &v );
++d[u], ++d[v];
}
std::sort( d + 1, d + n + 1 );
memset( f, 0x3f, sizeof f ), memset( g, 0xc0, sizeof g );
f[0] = g[0] = 0;
for ( int l = 1, r; l <= n; l = r + 1 ) {
for ( r = l; r < n && d[r + 1] == d[l]; ++r );
int v = d[l], c = r - l + 1;
if ( !v ) { g[0] = c; continue; }
rep ( r, 0, v - 1 ) {
trans( v, c, r, f,
[]( const int u, const int v ) { return u < v; } );
trans( v, c, r, g,
[]( const int u, const int v ) { return u > v; } );
}
}
LL ans = 0;
rep ( i, 0, n - 2 ) {
// printf( "%d: [%d,%d]\n", i, f[i], g[i] );
if ( f[i] <= g[i] ) ans += g[i] - f[i] + 1;
}
printf( "%lld\n", ans );
return 0;
}
Solution -「ARC 125F」Tree Degree Subset Sum的更多相关文章
- Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...
- Solution -「ARC 101E」「AT 4352」Ribbons on Tree
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个点的树,其中 \(2|n\),你需要把这些点两两配对,并把每对点间的路径染色.求使得所有边被染色的方案数 ...
- Solution -「HDU 5498」Tree
\(\mathcal{Description}\) link. 给定一个 \(n\) 个结点 \(m\) 条边的无向图,\(q\) 次操作每次随机选出一条边.问 \(q\) 条边去重后构成生成 ...
- Solution -「ARC 101D」「AT4353」Robots and Exits
\(\mathcal{Description}\) Link. 有 \(n\) 个小球,坐标为 \(x_{1..n}\):还有 \(m\) 个洞,坐标为 \(y_{1..m}\),保证上述坐标 ...
- Solution -「ARC 110D」Binomial Coefficient is Fun
\(\mathcal{Description}\) Link. 给定非负整数序列 \(\{a_n\}\),设 \(\{b_n\}\) 是一个非负整数序列且 \(\sum_{i=1}^nb_i\ ...
- Solution -「ARC 124E」Pass to Next
\(\mathcal{Description}\) Link. 有 \(n\) 个人站成一个环,初始时第 \(i\) 个人手里有 \(a_i\) 个球.第 \(i\) 个人可以将自己手中任意数 ...
- Solution -「ARC 126E」Infinite Operations
\(\mathcal{Description}\) Link. 给定序列 \(\{a_n\}\),定义一次操作为: 选择 \(a_i<a_j\),以及一个 \(x\in\mathbb R ...
- Solution -「ARC 126F」Affine Sort
\(\mathcal{Description}\) Link. 给定 \(\{x_n\}\),令 \[f(k)=\left|\{(a,b,c)\mid a,b\in[0,c),c\in[1,k ...
- Solution -「ARC 125E」Snack
\(\mathcal{Description}\) Link. 把 \(n\) 种零食分给 \(m\) 个人,第 \(i\) 种零食有 \(a_i\) 个:第 \(i\) 个人得到同种零食数量 ...
随机推荐
- Jquery通过遍历数组给checkbox赋默认值
需求:有一个数组:(北京菜,粤菜),checkbox如下: 现在想通过遍历这个数组,使数组里包含的值,在checkbox选中 代码: var flavors = new Array([北京菜 , 粤菜 ...
- 深入理解MySQL索引底层数据结构
作者:IT王小二 博客:https://itwxe.com MySQL 索引相关的数据结构有两种,一种是 B+tree,一种是 Hash,那么为什么在 99.99% 的情况下都使用的是 B+tree索 ...
- NPOI Excel导入Invalid header signature
excel是从网页下载或者其他第三方软件导出的解决方法:使用excel打开,另存为2003版的excel,再导入就好了或者保存为 xlsx
- 带你十天轻松搞定 Go 微服务系列(一)
本文开始,我们会出一个系列文章跟大家详细展示一个 go-zero 微服务示例,整个系列分十篇文章,目录结构如下: 环境搭建(本文) 服务拆分 用户服务 产品服务 订单服务 支付服务 RPC 服务 Au ...
- 搭建服务器之DNS
DNS服务器,实用软件为bind,服务守护进程为named,一下记录一下自己的搭建过程: 1.yum install bind* 其中包括bind本身软件,测试dns的一些工具dig,nslooku ...
- JavaScript如何实现上拉加载,下拉刷新?
转载地址: 面试官:JavaScript如何实现上拉加载,下拉刷新? 一.前言 下拉刷新和上拉加载这两种交互方式通常出现在移动端中 本质上等同于PC网页中的分页,只是交互形式不同 开源社区也有很多优秀 ...
- ansible roles实践——部署zabbix-agent
1.tasks/main.yml 2.template/zabbix_agentd.conf.j2 3.[root@master] /etc/ansible$ vim zabbix_agent.yml
- ssh代理转发
实验环境 serverA:172.16.2.116 serverB:172.16.2.225 serverC:172.16.2.115 "代理转发"是针对ssh认证过程的一种转发 ...
- 使用Hot Chocolate和.NET 6构建GraphQL应用(4) —— 实现Query映射功能
系列导航 使用Hot Chocolate和.NET 6构建GraphQL应用文章索引 需求 在上一篇文章使用Hot Chocolate和.NET 6构建GraphQL应用(3) -- 实现Query基 ...
- SQL 语句实战演练
1 创建数据库.删除数据库 备注:关键字不一定要大写. CREATE DATABASE sql_testDROP DATABASE sql_test 2 新建表 CREATE TABLE `emp` ...