\(\mathcal{Description}\)

  Link.

  给定含有 \(n\) 个结点的树,求非负整数对 \((x,y)\) 的数量,满足存在 \(\exist S\subseteq V,~|S|=x\land\sum_{u\in S}d_u=y\),其中 \(d_u\) 表示点 \(u\) 的度数。

  \(n\le2\times10^5\)。

\(\mathcal{Solution}\)

  方便期间,以下所有 \(d_u\) 表示 \(u\) 的度数 \(-1\)。

  出题人莫名其妙告诉你一棵树,无非是强调 \(\sum d=n-2\),自然想到根号分治。不过朴素 DP 的状态数量就已经难以接受,我们需要更多的结论。

  比如这个结论:

结论:若 \(x_1\le x_2\) 且 \((x_1,y),(x_2,y)\) 均合法,那么 \(\forall x_3\in[x_1,x_2],~(x_3,y)\) 也合法。

证明

  对于某个 $y$,取出最小 $x_l$ 和最大的 $x_r$,使得 $(x_l,y),(x_r,y)$ 合法。设 $\{d_n\}$ 中有 $z$ 个值为 $0$,则我们只需证明 $x_r-x_l\le 2z$,这是由于 $(x_l,y)$ 的选取中必然不含 $0$,那么 $(x_l+1,y),(x_l+2,y),\cdots,(x_l+z,y)$ 都合法,$(x_r-k,y)$ 同理。

  考虑任意一个 \(S\subseteq V\),令 \(d_S=\sum_{u\in S}d_u\),那么

  • \(d_S-|S|\ge -z\),显然;
  • \(d_S-|S|\le z-2\):\(d_S\le \sum d=n-2\),取等时 \(|S|\ge n-z\),得证。

  即 \(-z\le d_S-|S|\le z-2\),考虑将 \((x_l,y)\) 和 \((x_r,y)\) 代入,有 \(-z\le y-x_r\le y-x_l\le z-2\),可以推出 \(x_r-x_l\le 2z-2\),故已有原命题成立。 \(\square\)

  所以,我们只需要对于每个 \(y\),DP 求出 \(x_l\) 和 \(x_r\) 就能得到答案。DP 时根号分治,内部用单调队列优化即可。复杂度 \(\mathcal O(n\sqrt n)\)。

\(\mathcal{Code}\)

/*~Rainybunny~*/

#include <bits/stdc++.h>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) typedef long long LL; const int MAXN = 2e5;
int n, d[MAXN + 5], f[MAXN + 5], g[MAXN + 5]; inline void trans( const int v, const int c, const int r,
int* h, const auto& cmp ) { // cmp(a,b) is true <=> a is the better value.
static int que[MAXN + 5], th[MAXN + 5];
int hd = 1, tl = 0;
for ( int i = r; i <= n - 2; i += v ) {
th[i] = h[i];
while ( hd <= tl && que[hd] + c * v < i ) ++hd;
while ( hd <= tl
&& cmp( th[i] - i / v, th[que[tl]] - que[tl] / v ) ) --tl;
que[++tl] = i;
h[i] = th[que[hd]] + ( i - que[hd] ) / v;
}
} int main() {
scanf( "%d", &n );
rep ( i, 1, n ) d[i] = -1;
rep ( i, 2, n ) {
int u, v; scanf( "%d %d", &u, &v );
++d[u], ++d[v];
} std::sort( d + 1, d + n + 1 );
memset( f, 0x3f, sizeof f ), memset( g, 0xc0, sizeof g );
f[0] = g[0] = 0;
for ( int l = 1, r; l <= n; l = r + 1 ) {
for ( r = l; r < n && d[r + 1] == d[l]; ++r );
int v = d[l], c = r - l + 1;
if ( !v ) { g[0] = c; continue; }
rep ( r, 0, v - 1 ) {
trans( v, c, r, f,
[]( const int u, const int v ) { return u < v; } );
trans( v, c, r, g,
[]( const int u, const int v ) { return u > v; } );
}
} LL ans = 0;
rep ( i, 0, n - 2 ) {
// printf( "%d: [%d,%d]\n", i, f[i], g[i] );
if ( f[i] <= g[i] ) ans += g[i] - f[i] + 1;
}
printf( "%lld\n", ans );
return 0;
}

Solution -「ARC 125F」Tree Degree Subset Sum的更多相关文章

  1. Solution -「ARC 104E」Random LIS

    \(\mathcal{Description}\)   Link.   给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...

  2. Solution -「ARC 101E」「AT 4352」Ribbons on Tree

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个点的树,其中 \(2|n\),你需要把这些点两两配对,并把每对点间的路径染色.求使得所有边被染色的方案数 ...

  3. Solution -「HDU 5498」Tree

    \(\mathcal{Description}\)   link.   给定一个 \(n\) 个结点 \(m\) 条边的无向图,\(q\) 次操作每次随机选出一条边.问 \(q\) 条边去重后构成生成 ...

  4. Solution -「ARC 101D」「AT4353」Robots and Exits

    \(\mathcal{Description}\)   Link.   有 \(n\) 个小球,坐标为 \(x_{1..n}\):还有 \(m\) 个洞,坐标为 \(y_{1..m}\),保证上述坐标 ...

  5. Solution -「ARC 110D」Binomial Coefficient is Fun

    \(\mathcal{Description}\)   Link.   给定非负整数序列 \(\{a_n\}\),设 \(\{b_n\}\) 是一个非负整数序列且 \(\sum_{i=1}^nb_i\ ...

  6. Solution -「ARC 124E」Pass to Next

    \(\mathcal{Description}\)   Link.   有 \(n\) 个人站成一个环,初始时第 \(i\) 个人手里有 \(a_i\) 个球.第 \(i\) 个人可以将自己手中任意数 ...

  7. Solution -「ARC 126E」Infinite Operations

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\),定义一次操作为: 选择 \(a_i<a_j\),以及一个 \(x\in\mathbb R ...

  8. Solution -「ARC 126F」Affine Sort

    \(\mathcal{Description}\)   Link.   给定 \(\{x_n\}\),令 \[f(k)=\left|\{(a,b,c)\mid a,b\in[0,c),c\in[1,k ...

  9. Solution -「ARC 125E」Snack

    \(\mathcal{Description}\)   Link.   把 \(n\) 种零食分给 \(m\) 个人,第 \(i\) 种零食有 \(a_i\) 个:第 \(i\) 个人得到同种零食数量 ...

随机推荐

  1. 使用 淘宝 接口,根据公网ip 获取地理信息

    1.  源码,点击查看 1 import java.io.BufferedReader; 2 import java.io.IOException; 3 import java.io.InputStr ...

  2. linux VI命令快捷键

    ctrl+f  下一页 ctrl+b 上一页 ctrl+u 上半页 ctrl+d 下半页 数字+空格键 根据当前光标移动多少个字母 0键 光标移动到第一个字母,是当前行的 $键 光标移动到最后一个字母 ...

  3. Mysql实训任务书

    注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6635189537079296526/ 什么是数据库:数据库(Database)是按照数据结构来组织.存储和管理数据 ...

  4. icmpsh之icmp反弹shell

    一,技术原理 向ping www.baidu.com时,本机会先向百度的服务器发送ICMP请求包,如果请求成功了,则百度服务器会回应ICMP的响应包 引用百度百科: ICMP(Internet Con ...

  5. 用jquery实现省市联动

    <!-- 需求: [1] 动态生成省份选择框. [2] 当选择了省份的某一项时, 动态改变 城市选择中的列表项. --> <!DOCTYPE html> <html la ...

  6. spring是线程安全的吗

    spring默认bean是单例无状态的,我们交给spring管理的service,controller都是一个单例的bean,也就是说多个线程共享一个实例. 如果你在这种类里写成员变量,那这个变量的访 ...

  7. day4 对偶数、偶数位的操作

    1.函数fun()的功能:从低位开始取出整形变量s中偶数位上的数,依次构成一个新数放在t中.高位仍在高位. 效果理想:但是经测试的时候出现了错误 输入987654321时,打印出来的却是18681.经 ...

  8. 《剑指offer》面试题06. 从尾到头打印链表

    问题描述 输入一个链表的头节点,从尾到头反过来返回每个节点的值(用数组返回). 示例 1: 输入:head = [1,3,2] 输出:[2,3,1] 限制: 0 <= 链表长度 <= 10 ...

  9. 【记录一个问题】redis中执行事务出现错误“EXECABORT Transaction discarded because of previous errors”

    执行事务的大致代码如下: redisClient := GetRedisClient() pipe := redisClient.TxPipeline() err := pipe.ZAdd(k, ar ...

  10. 使用Cesium Stories在3D Tilesets中检查Features

    Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com/ 我们创建了3D Tiles用以流式化.可视化和分析大量的三维内容 ...