背景

除了传统的基于trigger和rule的分区,PostgreSQL 10开始已经内置了分区功能(目前仅支持list和range),使用pg_pathman则支持hash分区。

从性能角度,目前最好的还是pg_pathman分区。

但是,传统的分区手段,依旧是最灵活的,在其他方法都不奏效时,可以考虑传统方法。

如何创建传统的hash分区

1、创建父表

create table tbl (id int, info text, crt_time timestamp);

2、创建分区表,增加约束

do language plpgsql $$
declare
parts int := 4;
begin
for i in 0..parts-1 loop
execute format('create table tbl%s (like tbl including all) inherits (tbl)', i);
execute format('alter table tbl%s add constraint ck check(mod(id,%s)=%s)', i, parts, i);
end loop;
end;
$$;

3、创建触发器函数,内容为数据路由,路由后返回NULL(即不写本地父表)

create or replace function ins_tbl() returns trigger as $$
declare
begin
case abs(mod(NEW.id,4))
when 0 then
insert into tbl0 values (NEW.*);
when 1 then
insert into tbl1 values (NEW.*);
when 2 then
insert into tbl2 values (NEW.*);
when 3 then
insert into tbl3 values (NEW.*);
else
return NEW; -- 如果是NULL则写本地父表
end case;
return null;
end;
$$ language plpgsql strict;

4、创建before触发器

create trigger tg1 before insert on tbl for each row when (NEW.id is not null) execute procedure ins_tbl();

5、验证

postgres=# insert into tbl values (1);
INSERT 0 0
postgres=# insert into tbl values (null);
INSERT 0 1
postgres=# insert into tbl values (0);
INSERT 0 0
postgres=# insert into tbl values (1);
INSERT 0 0
postgres=# insert into tbl values (2);
INSERT 0 0
postgres=# insert into tbl values (3);
INSERT 0 0
postgres=# insert into tbl values (4);
INSERT 0 0 postgres=# select tableoid::regclass, * from tbl;
tableoid | id | info | crt_time
----------+----+------+----------
tbl | | |
tbl0 | 0 | |
tbl0 | 4 | |
tbl1 | 1 | |
tbl1 | 1 | |
tbl2 | 2 | |
tbl3 | 3 | |
(7 rows)

6、查询时,只要提供了约束条件,会自动过滤到子表,不会扫描不符合约束条件的其他子表。

postgres=# explain select * from tbl where abs(mod(id,4)) = abs(mod(1,4)) and id=1;
QUERY PLAN
--------------------------------------------------------------------------
Append (cost=0.00..979127.84 rows=3 width=45)
-> Seq Scan on tbl (cost=0.00..840377.67 rows=2 width=45)
Filter: ((id = 1) AND (abs(mod(id, 4)) = 1))
-> Seq Scan on tbl1 (cost=0.00..138750.17 rows=1 width=45)
Filter: ((id = 1) AND (abs(mod(id, 4)) = 1))
(5 rows)

这里应该是错误的,因为如果想利用constraint_exclusion来优化sql,where条件应该尽可能简单,尽量和check约束保持一致,不要转换类型,更谈不上使用函数表达式了,上面实测执行计划是走的全表扫描。后面会列出官方文档中提到的有关分区表和constraint_exclusion参数相关的注意事项。

这里我明白德哥的原意了,因为做的hash分区,取模的数值只有4个且均大于等于0,这里加上绝对值是恰当的,但这个abs应该加到check约束里面,不然constraint_exclusion的优化效果还是用不到的。

下面是实测执行计划及修改条件后的执行计划:

db版本:PostgreSQL 10.1,constraint_exclusion:partition

swrd=# explain select * from tbl where abs(mod(id,4)) = abs(mod(1,4)) and id=1;
QUERY PLAN
------------------------------------------------------------
Append (cost=0.00..133.66 rows=5 width=44)
-> Seq Scan on tbl (cost=0.00..3.26 rows=1 width=44)
Filter: ((id = 1) AND (abs(mod(id, 4)) = 1))
-> Seq Scan on tbl0 (cost=0.00..32.60 rows=1 width=44)
Filter: ((id = 1) AND (abs(mod(id, 4)) = 1))
-> Seq Scan on tbl1 (cost=0.00..32.60 rows=1 width=44)
Filter: ((id = 1) AND (abs(mod(id, 4)) = 1))
-> Seq Scan on tbl2 (cost=0.00..32.60 rows=1 width=44)
Filter: ((id = 1) AND (abs(mod(id, 4)) = 1))
-> Seq Scan on tbl3 (cost=0.00..32.60 rows=1 width=44)
Filter: ((id = 1) AND (abs(mod(id, 4)) = 1))
(11 rows)

修改where条件后的执行计划:

swrd=# explain select * from tbl where mod(id,4) = mod(1,4) and id=1;
QUERY PLAN
------------------------------------------------------------
Append (cost=0.00..32.75 rows=2 width=44)
-> Seq Scan on tbl (cost=0.00..2.98 rows=1 width=44)
Filter: ((id = 1) AND (mod(id, 4) = 1))
-> Seq Scan on tbl1 (cost=0.00..29.78 rows=1 width=44)
Filter: ((id = 1) AND (mod(id, 4) = 1))
(5 rows)

传统分区性能 对比 非分区表

传统分区表性能

性能相比没有分区有一定下降。(CPU开销略有提升)

1、创建压测脚本

vi test.sql
\set id random(1,100000)
insert into tbl values (:id);

2、压测

pgbench -M prepared -n -r -P 1 -f ./test.sql -c 56 -j 56 -T 120  

transaction type: ./test.sql
scaling factor: 1
query mode: prepared
number of clients: 56
number of threads: 56
duration: 120 s
number of transactions actually processed: 21277635
latency average = 0.316 ms
latency stddev = 0.170 ms
tps = 177290.033472 (including connections establishing)
tps = 177306.915203 (excluding connections establishing)
script statistics:
- statement latencies in milliseconds:
0.002 \set id random(1,100000)
0.315 insert into tbl values (:id);

3、资源开销

last pid: 36817;  load avg:  32.9,  15.7,  7.27;      up 15+00:46:36                                                                                                                                                              17:59:17
63 processes: 34 running, 29 sleeping
CPU states: 42.3% user, 0.0% nice, 20.4% system, 37.1% idle, 0.2% iowait
Memory: 192G used, 29G free, 116M buffers, 186G cached
DB activity: 168654 tps, 0 rollbs/s, 928 buffer r/s, 99 hit%, 176 row r/s, 168649 row w/
DB I/O: 0 reads/s, 0 KB/s, 0 writes/s, 0 KB/s
DB disk: 1455.4 GB total, 425.2 GB free (70% used)
Swap:

未分区表性能

postgres=# drop trigger tg1 on tbl ;

1、TPS

transaction type: ./test.sql
scaling factor: 1
query mode: prepared
number of clients: 56
number of threads: 56
duration: 120 s
number of transactions actually processed: 31188395
latency average = 0.215 ms
latency stddev = 0.261 ms
tps = 259884.798007 (including connections establishing)
tps = 259896.495810 (excluding connections establishing)
script statistics:
- statement latencies in milliseconds:
0.002 \set id random(1,100000)
0.214 insert into tbl values (:id);

2、资源开销

last pid: 36964;  load avg:  31.7,  18.7,  8.89;      up 15+00:47:41                                                                                                                                                              18:00:22
63 processes: 45 running, 18 sleeping
CPU states: 33.3% user, 0.0% nice, 26.8% system, 39.8% idle, 0.1% iowait
Memory: 194G used, 26G free, 118M buffers, 188G cached
DB activity: 256543 tps, 0 rollbs/s, 1006 buffer r/s, 99 hit%, 176 row r/s, 256538 row w
DB I/O: 0 reads/s, 0 KB/s, 0 writes/s, 0 KB/s
DB disk: 1455.4 GB total, 424.8 GB free (70% used)
Swap:

非整型字段,如何实现哈希分区

1、PostgreSQL内部提供了类型转换的哈希函数,可以将任意类型转换为整型。

                                  List of functions
Schema | Name | Result data type | Argument data types | Type
------------+----------------+------------------+-----------------------------+--------
pg_catalog | hash_aclitem | integer | aclitem | normal
pg_catalog | hash_array | integer | anyarray | normal
pg_catalog | hash_numeric | integer | numeric | normal
pg_catalog | hash_range | integer | anyrange | normal
pg_catalog | hashbpchar | integer | character | normal
pg_catalog | hashchar | integer | "char" | normal
pg_catalog | hashenum | integer | anyenum | normal
pg_catalog | hashfloat4 | integer | real | normal
pg_catalog | hashfloat8 | integer | double precision | normal
pg_catalog | hashinet | integer | inet | normal
pg_catalog | hashint2 | integer | smallint | normal
pg_catalog | hashint4 | integer | integer | normal
pg_catalog | hashint8 | integer | bigint | normal
pg_catalog | hashmacaddr | integer | macaddr | normal
pg_catalog | hashmacaddr8 | integer | macaddr8 | normal
pg_catalog | hashname | integer | name | normal
pg_catalog | hashoid | integer | oid | normal
pg_catalog | hashoidvector | integer | oidvector | normal
pg_catalog | hashtext | integer | text | normal
pg_catalog | hashvarlena | integer | internal | normal
pg_catalog | interval_hash | integer | interval | normal
pg_catalog | jsonb_hash | integer | jsonb | normal
pg_catalog | pg_lsn_hash | integer | pg_lsn | normal
pg_catalog | time_hash | integer | time without time zone | normal
pg_catalog | timestamp_hash | integer | timestamp without time zone | normal
pg_catalog | timetz_hash | integer | time with time zone | normal
pg_catalog | uuid_hash | integer | uuid | normal

2、其他字段类型的哈希表方法如下

如 hashtext

drop table tbl;  

create table tbl (id text, info text, crt_time timestamp);  

do language plpgsql $$
declare
parts int := 4;
begin
for i in 0..parts-1 loop
execute format('create table tbl%s (like tbl including all) inherits (tbl)', i);
execute format('alter table tbl%s add constraint ck check(abs(mod(hashtext(id),%s))=%s)', i, parts, i);
end loop;
end;
$$; create or replace function ins_tbl() returns trigger as $$
declare
begin
case abs(mod(hashtext(NEW.id),4))
when 0 then
insert into tbl0 values (NEW.*);
when 1 then
insert into tbl1 values (NEW.*);
when 2 then
insert into tbl2 values (NEW.*);
when 3 then
insert into tbl3 values (NEW.*);
else
return NEW;
end case;
return null;
end;
$$ language plpgsql strict; create trigger tg1 before insert on tbl for each row when (NEW.id is not null) execute procedure ins_tbl();

性能与整型一样。

传统分区性能 对比 非分区表 - 性能结果

1、性能

模式 insert N 行/s
基于trigger的hash分区 17.7 万
未分区 26 万

2、CPU资源开销

模式 user system idle
基于trigger的hash分区 42.3% 20.4% 37.1%
未分区 33.3% 26.8% 39.8%

小结

除了传统的基于trigger和rule的分区,PostgreSQL 10开始已经内置了分区功能(目前仅支持list和range),使用pg_pathman则支持hash分区。

从性能角度,目前最好的还是pg_pathman分区。

《PostgreSQL 10 内置分区 vs pg_pathman perf profiling》

《PostgreSQL 10.0 preview 功能增强 - 内置分区表》

《PostgreSQL 9.5+ 高效分区表实现 - pg_pathman》

但是,传统的分区手段,依旧是最灵活的,在其他方法都不奏效时,可以考虑传统方法。

传统手段中,最懒散的做法(当然是以牺牲性能为前提),例子:

《PostgreSQL general public partition table trigger》

下面则是pg10官方文档中提到的有关分区表和有关参数constraint_exclusion的相关注意事项:

The following caveats apply to constraint exclusion, which is used by both inheritance and partitioned tables:

  • Constraint exclusion only works when the query's WHERE clause contains constants (or externally supplied parameters). For example, a comparison against a non-immutable function such as CURRENT_TIMESTAMP cannot be optimized, since the planner cannot know which partition the function value might fall into at run time.

  • Keep the partitioning constraints simple, else the planner may not be able to prove that partitions don't need to be visited. Use simple equality conditions for list partitioning, or simple range tests for range partitioning, as illustrated in the preceding examples. A good rule of thumb is that partitioning constraints should contain only comparisons of the partitioning column(s) to constants using B-tree-indexable operators, which applies even to partitioned tables, because only B-tree-indexable column(s) are allowed in the partition key. (This is not a problem when using declarative partitioning, since the automatically generated constraints are simple enough to be understood by the planner.)

  • All constraints on all partitions of the master table are examined during constraint exclusion, so large numbers of partitions are likely to increase query planning time considerably. Partitioning using these techniques will work well with up to perhaps a hundred partitions; don't try to use many thousands of partitions.

简单翻译:

  • 约束排除只有在查询语句的where部分含有常量时,才有效。比如在做比较时,不可以用non-immutable function,类似CURRENT_TIMESTAMP就不能被优化,因为优化器不能确定这个函数在执行时会落到那个分区。
  • 尽量保持分区约束的简单性,不然优化器可能无法确定要访问哪个分区。
  • 所有分区表中的约束在优化器进行约束检查时,都会查到,所以只要分区表数量不是成千上万就不会影响太大。

摘自:

https://github.com/digoal/blog/blob/master/201711/20171122_02.md

https://www.postgresql.org/docs/10/static/ddl-partitioning.html#DDL-PARTITIONING-CONSTRAINT-EXCLUSION

PostgreSQL 传统 hash 分区方法和性能的更多相关文章

  1. PostgreSQL分区表实现——pg_pathman安装、配置

    近日由于系统运行时间太长,数据库库表中的数据也是越来越多,为了缩短库表的操作时间,所以对数据库中的部分库表进行分区的操作. 通过研究,决定采用pg_pathman插件对库表进行分区操作.pg_path ...

  2. 数据库新秀 postgresql vs mongo 性能PK

    前几天看了一篇文章<High Performance JSON PostgreSQL vs. MongoDB> 发布在Percona Live Europe 2017 作者是<Dom ...

  3. PostgreSQL之性能优化(转)

    转载自:https://blog.csdn.net/huangwenyi1010/article/details/72853785 解决问题 前言 PostgreSQL的配置参数作为性能调优的一部分, ...

  4. (转) MySQL分区与传统的分库分表

    传统的分库分表 原文:http://blog.csdn.net/kobejayandy/article/details/54799579 传统的分库分表都是通过应用层逻辑实现的,对于数据库层面来说,都 ...

  5. PostgreSQL系列一:PostgreSQL简介与安装

    一.PostgreSQL简介     1.1 PostgreSQL概述             PostgreSQL数据库是目前功能最强大的开源数据库,支持丰富的数据类型(如JSON和JSONB类型. ...

  6. 德哥PostgreSQL学习资料汇总(转)

    文章来自:https://yq.aliyun.com/articles/59251?spm=5176.100239.bloglist.95.5S5P9S 德哥博客新地址:https://billtia ...

  7. 索引,B+ tree,动态hash表

    数据库课索引部分的学习笔记. 教材: Database System: The Complete Book, Chapter 15 Database System Implementation, Ch ...

  8. PostgreSQL EXPLAIN执行计划学习--多表连接几种Join方式比较

    转了一部分.稍后再修改. 三种多表Join的算法: 一. NESTED LOOP: 对于被连接的数据子集较小的情况,嵌套循环连接是个较好的选择.在嵌套循环中,内表被外表驱动,外表返回的每一行都要在内表 ...

  9. 从NLP任务中文本向量的降维问题,引出LSH(Locality Sensitive Hash 局部敏感哈希)算法及其思想的讨论

    1. 引言 - 近似近邻搜索被提出所在的时代背景和挑战 0x1:从NN(Neighbor Search)说起 ANN的前身技术是NN(Neighbor Search),简单地说,最近邻检索就是根据数据 ...

随机推荐

  1. Windows 下在 Python (Anaconda) 中安装 Dlib 库

    0. 引言 介绍在 Windows  操作系统下,在 Python 的 Anaconda 集成环境中,安装 Dlib 库 : 对于不了解源码编译的,或者利用 cmake 方法失败的,可以尝试下此方法: ...

  2. MSCOCO - COCO API 的安装

    在 Windows 下安装 COCO API 的方法. 使用 pip 命令进行安装: pip install git+https://github.com/philferriere/cocoapi.g ...

  3. Python3实现机器学习经典算法(三)ID3决策树

    一.ID3决策树概述 ID3决策树是另一种非常重要的用来处理分类问题的结构,它形似一个嵌套N层的IF…ELSE结构,但是它的判断标准不再是一个关系表达式,而是对应的模块的信息增益.它通过信息增益的大小 ...

  4. 20181120-8 Beta阶段第2周/共2周 Scrum立会报告+燃尽图 05

    此作业要求参见[https://edu.cnblogs.com/campus/nenu/2018fall/homework/2413] 版本控制地址    [https://git.coding.ne ...

  5. ASP.NET MVC5 学习系列之模型绑定

    一.理解 Model Binding Model Binding(模型绑定) 是 HTTP 请求和 Action 方法之间的桥梁,它根据 Action 方法中的 Model 类型创建 .NET 对象, ...

  6. Alpha事后诸葛会议

    [设想和目标] Q1:我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? "小葵日记"是为了解决18-30岁年轻用户在记录生活时希望得到一美体验友好 ...

  7. HttpCookie Class

    提供创建和操作各 HTTP Cookie 的类型安全方法. #region 写入指定Cookie的值 +static void WriteCookie(string cookieName, strin ...

  8. 第6题 ZigZag转换

    题目描述如下: The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of ro ...

  9. PAT 甲级 1020 Tree Traversals

    https://pintia.cn/problem-sets/994805342720868352/problems/994805485033603072 Suppose that all the k ...

  10. yum 安装php环境

    centos下安装php环境 | 浏览:3831 | 更新:2014-11-04 17:01 1 2 3 分步阅读 在网上看了很多,很多都不能用,所以就把能用的实践下,过程记录下,方便自己和网友以后查 ...