Modular Inverse


Time Limit: 2 Seconds      Memory Limit: 65536 KB

The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1x (mod m). This is equivalent to ax≡1 (mod m).

Input

There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.

Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.

Output

For each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".

Sample Input

3
3 11
4 12
5 13

Sample Output

4
Not Exist
8
题解:
最小乘法逆元:由ax≡1 (mod m)得:转化为解线性方程ax+by=1
需要注意的地方:最小解取模时不能写成(x%t+t)%t 因为此题要的是正数解 这样写有时会输出0

首先我来回顾下欧几里德的几个定理,有助于理解这道题;

定理一:如果d = gcd(a, b),则必能找到正的或负的整数k和l,使 d = a*x+ b*y。

定理二:若gcd(a, b) = 1,则方程ax ≡ c (mod b)在[0, b-1]上有唯一解。

定理三:若gcd(a, b) = d,则方程ax ≡ c (mod b)在[0, b/d - 1]上有唯一解。

对于ax+by=1;  即ax=1(mod b)      当且仅当gcd(a,b)!=1 的时候,无解!

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <string>
#include <queue>
#include <stack>
#include <algorithm> #define INF 0x7fffffff
#define EPS 1e-12
#define MOD 1000000007
#define PI 3.141592653579798
#define N 100000 using namespace std; typedef long long LL;
typedef double DB; LL e_gcd(LL a,LL b,LL &x,LL &y)
{
if(b==)
{
x=;
y=;
return a;
}
LL ans=e_gcd(b,a%b,x,y);
LL temp=x;
x=y;
y=temp-a/b*y;
return ans;
} LL cal(LL a,LL b,LL c)
{
LL x,y;
LL gcd=e_gcd(a,b,x,y);
if(c%gcd!=) return -;
x*=c/gcd;
b/=gcd;
if(b<) b=-b;
LL ans=x%b;
if(ans<=) ans+=b;
return ans;
} int main()
{
LL a,b,t;
scanf("%lld",&t);
while(t--)
{
scanf("%lld%lld",&a,&b);
LL ans=cal(a,b,);
if(ans==-) printf("Not Exist\n");
else printf("%lld\n",ans);
}
return ;
}

ZOJ 3609 Modular Inverse(拓展欧几里得求最小逆元)的更多相关文章

  1. ZOJ 3593 One Person Game(拓展欧几里得求最小步数)

    One Person Game Time Limit: 2 Seconds      Memory Limit: 65536 KB There is an interesting and simple ...

  2. gcd模板(欧几里得与扩展欧几里得、拓展欧几里得求逆元)

    gcd(欧几里得算法辗转相除法): gcd ( a , b )= d : 即 d = gcd ( a , b ) = gcd ( b , a mod b ):以此式进行递归即可. 之前一直愚蠢地以为辗 ...

  3. Modular Inverse (拓展欧几里得求逆元)

    The modular modular multiplicative inverse of an integer a modulo m is an integer xsuch that a-1≡x ( ...

  4. ZOJ Problem Set - 3593 拓展欧几里得 数学

    ZOJ Problem Set - 3593 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3593 One Person ...

  5. ZOJ——3609 Modular Inverse

    Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative ...

  6. ZOJ 3609 Modular Inverse(扩展欧几里得)题解

    题意:求乘法逆元最小正正数解 思路:a*x≡1(mod m),则称x 是 a 关于 m 的乘法逆元,可以通过解a*x + m*y = 1解得x.那么通过EXGcd得到特解x1,最小正解x1 = x1 ...

  7. ZOJ 3609 Modular Inverse(扩展欧几里德)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4712 The modular modular multiplicat ...

  8. ZOJ 3609 Modular Inverse

    点我看题目 题意 : 这个题是求逆元的,怎么说呢,题目看着很别扭....就是给你a和m,让你求一个最小的x满足a-1≡x (mod m).或者ax≡1 (mod m).通俗点说呢,就是找一个最小的x, ...

  9. POJ 1061 青蛙的约会(拓展欧几里得求同余方程,解ax+by=c)

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 122871   Accepted: 26147 Descript ...

随机推荐

  1. SpringInAction--自动化装配(显示装配之 java注解配置)

    Spring在配置时候有三种方案可选 1.在xml中进行显示配置 2.在java中进行显示配置 3.隐式的Bean发现机制和自动装配 今天学习的 第二种—— 在java中进行显示配置 场景: 尽管在很 ...

  2. C# 如何判断字符串中是否包含另一个字符串?

    如  字符串1(str1)为:“你好怎么解决呢!”    字符串2(str2)为:“你好” 如果str1里面包str2 则 Response.Write("成功");否则 Resp ...

  3. React-Native进阶_1.抽取样式和组件

    组织应用的样式和组件 就像抽取工具类一样,放在单独的文件中,在要使用的地方去导入调用即可. 1.导出样式 Style 样式可以单独写在一个JavaScript文件中,然后导出给其他JavaScript ...

  4. 国内知名的自然语言处理(NLP)团队

    工业界 腾讯人工智能实验室(Tencent AI Lab) 百度自然语言处理(Baidu NLP):对外提供了百度AI开放平台,王海峰(现任百度副总裁,AI技术平台体系AIG总负责人) 微软亚洲研究院 ...

  5. linux centos 安装opencv

    系统:Centos 6.5 最后版本 OpenCV: 2.4.9 1.安装依赖包(很重要) yum install cmake gcc gcc-c++ gtk+-devel gimp-devel gi ...

  6. crm 03--> crm与权限结合

    ---恢复内容开始--- 1:先分组 2:给权限分组 3:具体的权限(即设计url) 二:制作左侧菜单,显示当前用户拥有的权限 关于项目下的templates里的HTML查找顺序 先从根目录找,找不到 ...

  7. Android 百度地图2.4.2版本标注动画效果

    ImageView latestMapEventImageView = null; // 更新震中位置 private void updateMapEventOverlay() { mMapEvent ...

  8. Android Hook框架Xposed详解

    1 Introduction 1.1  概述 Xposed 是 GitHUB 上 rovo89 大大设计的一个针对 Android 平台的动态劫持项目,通过替换 /system/bin/app_pro ...

  9. ZOJ3640Help Me Escape(师傅逃亡系列•一)(数学期望||概率DP)

    Background If thou doest well, shalt thou not be accepted? and if thou doest not well, sin lieth at ...

  10. JPA无法删除对象【实际项目解决办法】

    并非通用, 根据自己实际情况来 不能删除前的dao方法 public void delete(CmsProjectNew bean); 可以删除后的dao方法 @Modifying @Query(&q ...