BlockManagerMaster

只是维护一系列对BlockManagerMasterActor的接口, 所有的都是通过tell和askDriverWithReply从BlockManagerMasterActor获取数据
比较鸡肋的类

private[spark] class BlockManagerMaster(var driverActor: ActorRef) extends Logging {
/** Remove a dead executor from the driver actor. This is only called on the driver side. */
def removeExecutor(execId: String)
/**
* Send the driver actor a heart beat from the slave. Returns true if everything works out,
* false if the driver does not know about the given block manager, which means the block
* manager should re-register.
*/
def sendHeartBeat(blockManagerId: BlockManagerId): Boolean
/** Register the BlockManager's id with the driver. */
def registerBlockManager(blockManagerId: BlockManagerId, maxMemSize: Long, slaveActor: ActorRef)
def updateBlockInfo(
blockManagerId: BlockManagerId,
blockId: String,
storageLevel: StorageLevel,
memSize: Long,
diskSize: Long): Boolean
/** Get locations of the blockId from the driver */
def getLocations(blockId: String): Seq[BlockManagerId]
/** Get locations of multiple blockIds from the driver */
def getLocations(blockIds: Array[String]): Seq[Seq[BlockManagerId]]
/** Get ids of other nodes in the cluster from the driver */
def getPeers(blockManagerId: BlockManagerId, numPeers: Int): Seq[BlockManagerId]
/**
* Remove a block from the slaves that have it. This can only be used to remove
* blocks that the driver knows about.
*/
def removeBlock(blockId: String)
/**
* Remove all blocks belonging to the given RDD.
*/
def removeRdd(rddId: Int, blocking: Boolean)
/**
* Return the memory status for each block manager, in the form of a map from
* the block manager's id to two long values. The first value is the maximum
* amount of memory allocated for the block manager, while the second is the
* amount of remaining memory.
*/
def getMemoryStatus: Map[BlockManagerId, (Long, Long)]
def getStorageStatus: Array[StorageStatus]
/** Stop the driver actor, called only on the Spark driver node */
def stop() {
if (driverActor != null) {
tell(StopBlockManagerMaster)
driverActor = null
logInfo("BlockManagerMaster stopped")
}
} /** Send a one-way message to the master actor, to which we expect it to reply with true. */
private def tell(message: Any) {
if (!askDriverWithReply[Boolean](message)) {
throw new SparkException("BlockManagerMasterActor returned false, expected true.")
}
} /**
* Send a message to the driver actor and get its result within a default timeout, or
* throw a SparkException if this fails.
*/
private def askDriverWithReply[T](message: Any): T = {
// TODO: Consider removing multiple attempts
if (driverActor == null) {
throw new SparkException("Error sending message to BlockManager as driverActor is null" +
"[message =" + message + "]")
}
var attempts = 0
var lastException: Exception = null
while (attempts < AKKA_RETRY_ATTEMPTS) {
attempts += 1
try {
val future = driverActor.ask(message)(timeout)
val result = Await.result(future, timeout)
if (result == null) {
throw new SparkException("BlockManagerMaster returned null")
}
return result.asInstanceOf[T]
} catch {
case ie: InterruptedException => throw ie
case e: Exception =>
lastException = e
logWarning("Error sending message to BlockManagerMaster in" + attempts + " attempts", e)
}
Thread.sleep(AKKA_RETRY_INTERVAL_MS)
}
throw new SparkException(
"Error sending message to BlockManagerMaster [message =" + message + "]", lastException)
}
}

 

BlockManagerInfo

在BlockManagerMasterActor object中主要就是定义BlockManagerInfo

主要用于管理BlockManager下面的所有block的BlockStatus和hb, 更新和删除

为何要定义在这个地方?

private[spark]
object BlockManagerMasterActor {
case class BlockStatus(storageLevel: StorageLevel, memSize: Long, diskSize: Long) class BlockManagerInfo(
val blockManagerId: BlockManagerId,
timeMs: Long,
val maxMem: Long,
val slaveActor: ActorRef)
extends Logging {
    private var _remainingMem: Long = maxMem  //BlockManager的memory大小
    private var _lastSeenMs: Long = timeMs    //BlockManager的heartbeat, 会被不停的更新 
// Mapping from block id to its status.
private val _blocks = new JHashMap[String, BlockStatus] // buffer每个block的BlockStatus
    // 这里的memSize, 默认为0, 意思是droppedMemorySize
def updateBlockInfo(blockId: String, storageLevel: StorageLevel, memSize: Long, diskSize: Long) {
if (_blocks.containsKey(blockId)) {
// The block exists on the slave already.
val originalLevel: StorageLevel = _blocks.get(blockId).storageLevel
if (originalLevel.useMemory) {
_remainingMem += memSize
}
} if (storageLevel.isValid) {// isValid means it is either stored in-memory or on-disk.
_blocks.put(blockId, BlockStatus(storageLevel, memSize, diskSize))
        if (storageLevel.useMemory) {
_remainingMem -= memSize
}
} else if (_blocks.containsKey(blockId)) {
// If isValid is not true, drop the block.
val blockStatus: BlockStatus = _blocks.get(blockId)
_blocks.remove(blockId)
if (blockStatus.storageLevel.useMemory) {
_remainingMem += blockStatus.memSize
}
}
} def removeBlock(blockId: String) {
if (_blocks.containsKey(blockId)) {
_remainingMem += _blocks.get(blockId).memSize
_blocks.remove(blockId)
}
}
}
}

 

BlockManagerMasterActor

维护各个slave的BlockManagerInfo信息, 以及各个block的locations信息(所属哪个BlockManager) 
核心功能就是管理和更新这些元数据,

RegisterBlockManager

updateBlockInfo

heartBeat

RemoveRDD, Executor(BlockManager), Block

/**
* BlockManagerMasterActor is an actor on the master node to track statuses of
* all slaves' block managers.
*/
private[spark]
class BlockManagerMasterActor(val isLocal: Boolean) extends Actor with Logging {
// Mapping from block manager id to the block manager's information.
  // Buffer所有的BlockManager的Info
private val blockManagerInfo =
new mutable.HashMap[BlockManagerId, BlockManagerMasterActor.BlockManagerInfo] // Mapping from executor ID to block manager ID.
private val blockManagerIdByExecutor = new mutable.HashMap[String, BlockManagerId] // Mapping from block id to the set of block managers that have the block.
  // Buffer blockLocation,这里用BlockManagerId来表示location,因为从BlockManagerId可以知道对应的executor
private val blockLocations = new JHashMap[String, mutable.HashSet[BlockManagerId]]
  def receive = {
case RegisterBlockManager(blockManagerId, maxMemSize, slaveActor) =>
register(blockManagerId, maxMemSize, slaveActor)
sender ! true // BlockManagerMaster.tell要求返回true
// ……这里接收的和BlockManagerMaster中的接口一致, 省略
}

   // 处理RegisterBlockManager event, 用于slave向master注册自己的blockmanager

  // 主要就是将slave的BlockManagerInfo注册到master中

  private def register(id: BlockManagerId, maxMemSize: Long, slaveActor: ActorRef) {
if (id.executorId == "<driver>" && !isLocal) { // 如果本身就是driver,就不需要注册
// Got a register message from the master node; don't register it
} else if (!blockManagerInfo.contains(id)) { // 如果包含,说明已经注册过
blockManagerIdByExecutor.get(id.executorId) match {
case Some(manager) => // 一个executor应该只有一个bm, 所以如果该executor已经注册过bm ……
// A block manager of the same executor already exists.
// This should never happen. Let's just quit.
logError("Got two different block manager registrations on " + id.executorId)
System.exit(1)
case None =>
blockManagerIdByExecutor(id.executorId) = id
}
blockManagerInfo(id) = new BlockManagerMasterActor.BlockManagerInfo( // 创建新的BlockManagerInfo, 并buffer在blockManagerInfo中
id, System.currentTimeMillis(), maxMemSize, slaveActor)
}
}

 

  // 处理updateBlockInfo

  private def updateBlockInfo(
blockManagerId: BlockManagerId,
blockId: String,
storageLevel: StorageLevel,
memSize: Long,
diskSize: Long) { if (!blockManagerInfo.contains(blockManagerId)) { //blockManagerInfo中不包含这个blockManagerId
if (blockManagerId.executorId == "<driver>" && !isLocal) {
// We intentionally do not register the master (except in local mode),
// so we should not indicate failure.
sender ! true
} else {
sender ! false
}
return
}
//调用BlockManagerInfo.updateBlockInfo
blockManagerInfo(blockManagerId).updateBlockInfo(blockId, storageLevel, memSize, diskSize)
    var locations: mutable.HashSet[BlockManagerId] = null
if (blockLocations.containsKey(blockId)) {
locations = blockLocations.get(blockId)
} else {
locations = new mutable.HashSet[BlockManagerId]
blockLocations.put(blockId, locations) //缓存该block的location信息
} if (storageLevel.isValid) {
locations.add(blockManagerId)
} else {
locations.remove(blockManagerId)
} // Remove the block from master tracking if it has been removed on all slaves.
if (locations.size == 0) {
blockLocations.remove(blockId)
}

    sender ! true
}

    // 处理removeRdd, 删除RDD

  private def removeRdd(rddId: Int): Future[Seq[Int]] = {
// First remove the metadata for the given RDD, and then asynchronously remove the blocks from the slaves.
val prefix = "rdd_" + rddId + "_"
// Find all blocks for the given RDD, remove the block from both blockLocations and
// the blockManagerInfo that is tracking the blocks.
val blocks = blockLocations.keySet().filter(_.startsWith(prefix)) // 从blockLocations中找出所有该RDD对应的blocks
blocks.foreach { blockId => // 从blockManagerInfo和blockLocations中去除这些blocks信息
val bms: mutable.HashSet[BlockManagerId] = blockLocations.get(blockId)
bms.foreach(bm => blockManagerInfo.get(bm).foreach(_.removeBlock(blockId)))
blockLocations.remove(blockId)
}
// Ask the slaves to remove the RDD, and put the result in a sequence of Futures.
// The dispatcher is used as an implicit argument into the Future sequence construction.
import context.dispatcher
val removeMsg = RemoveRdd(rddId)
Future.sequence(blockManagerInfo.values.map { bm => // Future.sequence, Transforms a Traversable[Future[A]] into a Future[Traversable[A]
bm.slaveActor.ask(removeMsg)(akkaTimeout).mapTo[Int] // 将RemoveRDD的msg发送给每个slave actors
}.toSeq)
}
  //处理removeExecutor
//删除Executor上的BlockManager, 名字起的不好
  private def removeExecutor(execId: String) {
logInfo("Trying to remove executor " + execId + " from BlockManagerMaster.")
blockManagerIdByExecutor.get(execId).foreach(removeBlockManager)
}
private def removeBlockManager(blockManagerId: BlockManagerId) {
val info = blockManagerInfo(blockManagerId) // Remove the block manager from blockManagerIdByExecutor.
blockManagerIdByExecutor -= blockManagerId.executorId // Remove it from blockManagerInfo and remove all the blocks.
blockManagerInfo.remove(blockManagerId)
val iterator = info.blocks.keySet.iterator
while (iterator.hasNext) {
val blockId = iterator.next
val locations = blockLocations.get(blockId)
locations -= blockManagerId
if (locations.size == 0) {
blockLocations.remove(locations)
}
}
}

  // 处理sendHeartBeat

  // blockManager的hb通过blockManagerInfo的LastSeenMs来表示

  private def heartBeat(blockManagerId: BlockManagerId): Boolean = {
if (!blockManagerInfo.contains(blockManagerId)) {
blockManagerId.executorId == "<driver>" && !isLocal
} else {
blockManagerInfo(blockManagerId).updateLastSeenMs()
true
}
}

   // 处理removeBlock

  // Remove a block from the slaves that have it. This can only be used to remove
// blocks that the master knows about.
private def removeBlockFromWorkers(blockId: String) {
val locations = blockLocations.get(blockId)
if (locations != null) {
locations.foreach { blockManagerId: BlockManagerId =>
val blockManager = blockManagerInfo.get(blockManagerId)
if (blockManager.isDefined) {
// Remove the block from the slave's BlockManager.
// Doesn't actually wait for a confirmation and the message might get lost.
// If message loss becomes frequent, we should add retry logic here.
blockManager.get.slaveActor ! RemoveBlock(blockId)
}
}
}
}

 

BlockManagerSlaveActor

Master可用发给的slave的message就2种, 所以很简单...过于简单

因为他只处理master发送来的event, 而大部分对于数据的读写等, 在BlockManager中直接实现了

/**
* An actor to take commands from the master to execute options. For example,
* this is used to remove blocks from the slave's BlockManager.
*/
class BlockManagerSlaveActor(blockManager: BlockManager) extends Actor {
override def receive = {
case RemoveBlock(blockId) =>
blockManager.removeBlock(blockId)
case RemoveRdd(rddId) =>
val numBlocksRemoved = blockManager.removeRdd(rddId)
sender ! numBlocksRemoved
}
}

Spark 源码分析 – BlockManagerMaster&Slave的更多相关文章

  1. Spark源码分析 – 汇总索引

    http://jerryshao.me/categories.html#architecture-ref http://blog.csdn.net/pelick/article/details/172 ...

  2. Spark源码分析 – BlockManager

    参考, Spark源码分析之-Storage模块 对于storage, 为何Spark需要storage模块?为了cache RDD Spark的特点就是可以将RDD cache在memory或dis ...

  3. Spark源码分析之-Storage模块

    原文链接:http://jerryshao.me/architecture/2013/10/08/spark-storage-module-analysis/ Background 前段时间琐事颇多, ...

  4. 【转】Spark源码分析之-deploy模块

    原文地址:http://jerryshao.me/architecture/2013/04/30/Spark%E6%BA%90%E7%A0%81%E5%88%86%E6%9E%90%E4%B9%8B- ...

  5. Spark源码分析 – Shuffle

    参考详细探究Spark的shuffle实现, 写的很清楚, 当前设计的来龙去脉 Hadoop Hadoop的思路是, 在mapper端每次当memory buffer中的数据快满的时候, 先将memo ...

  6. Spark源码分析 – SchedulerBackend

    SchedulerBackend, 两个任务, 申请资源和task执行和管理 对于SparkDeploySchedulerBackend, 基于actor模式, 主要就是启动和管理两个actor De ...

  7. Spark源码分析 – DAGScheduler

    DAGScheduler的架构其实非常简单, 1. eventQueue, 所有需要DAGScheduler处理的事情都需要往eventQueue中发送event 2. eventLoop Threa ...

  8. Spark源码分析之六:Task调度(二)

    话说在<Spark源码分析之五:Task调度(一)>一文中,我们对Task调度分析到了DriverEndpoint的makeOffers()方法.这个方法针对接收到的ReviveOffer ...

  9. Spark源码分析之五:Task调度(一)

    在前四篇博文中,我们分析了Job提交运行总流程的第一阶段Stage划分与提交,它又被细化为三个分阶段: 1.Job的调度模型与运行反馈: 2.Stage划分: 3.Stage提交:对应TaskSet的 ...

随机推荐

  1. poj 1611 The Suspects 并查集变形题目

    The Suspects   Time Limit: 1000MS   Memory Limit: 20000K Total Submissions: 20596   Accepted: 9998 D ...

  2. jQuery 效果 - slideToggle() 方法

    实例 通过使用滑动效果,在显示和隐藏状态之间切换 <p> 元素: $(".btn1").click(function(){ $("p").slide ...

  3. spring boot文件上传、下载

    主题:Spring boot 文件上传(多文件上传)[从零开始学Spring Boot]http://www.iteye.com/topic/1143595 Spring MVC实现文件下载http: ...

  4. C语言 · 利息计算

    算法提高 利息计算   时间限制:1.0s   内存限制:512.0MB      编制程序完成下述任务:接受两个数,一个为用户一年期定期存款金额,一个为按照百分比格式表示的利率:程序计算一年期满 后 ...

  5. [misc]printf/fprintf/sprintf/snprintf函数

    转自:http://blog.csdn.net/To_Be_IT_1/article/details/32179549 需要包含的头文件 #include <stdio.h> int pr ...

  6. Modsecurity原理分析--从防御方面谈WAF的绕过(一)

    0x00 背景知识 一说到WAF,在我们安全工作者,或者作为普通的白帽子来说,就很头疼,因为好多时候,我们发到服务端的恶意流量都被挡掉了,于是就产生了各种绕“WAF”的话题,绕来绕去,也就无非那么多种 ...

  7. NPOI导入Excel日期格式的处理 - 附类型格式匹配表

    传统操作Excel方法在部署的时候遇到很多问题,如目标主机需要安装Excel.64位电脑不支持.需要安装相关驱动程序等.所以我们一般会使用开源的NPOI来替代传统的Excel操作方法,NPOI的优点是 ...

  8. 除去Scala的糖衣(13) -- Default Parameter Value

    欢迎关注我的新博客地址:http://cuipengfei.me/ 好久没有写博客了,上一次更新竟然是一月份. 说工作忙都是借口,咋有空看美剧呢. 这半年荒废掉博客说到底就是懒,惯性的懒惰.写博客这事 ...

  9. Javascript 验证上传图片大小[客户端验证]

    需求分析: 在做上传图片的时候,如果不限制上传图片大小,后果非常的严重.那么我们怎样才可以解决一个棘手的问题呢?有两种方式: 1)后台处理: 也就是AJAX POST提交到后台,把图片上传到服务器上, ...

  10. Exception in thread "main" java.lang.NoClassDefFoundError: com/google/common/base/Function问题解决

    selenium 目录下的lib文件夹下的所有包都加到类库里