codevs 1213 解的个数

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 黄金 Gold
题目描述 Description

已知整数x,y满足如下面的条件:

ax+by+c = 0

p<=x<=q

r<=y<=s

求满足这些条件的x,y的个数。

输入描述 Input Description

第一行有一个整数nn<=10),表示有n个任务。n<=10

以下有n行,每行有7个整数,分别为:a,b,c,p,q,r,s。均不超过108。

输出描述 Output Description

n行,第i行是第i个任务的解的个数。

样例输入 Sample Input

2

2 3 -7 0 10 0 10

1 1 1 -10 10 -9 9

样例输出 Sample Output

1

19

 #include<iostream>
using namespace std;
#include<cstdio>
#include<cstring>
int n;
long long a,b,c,p,q,r,s;
void exgcd(int a,int b,int &x,int &y,int &gcd)
{
if(b==)
{
x=;y=;
gcd=a;
return;
}
exgcd(b,a%b,x,y,gcd);
int t=x;
x=y;
y=t-(a/b)*y;
}
int main()
{
scanf("%d",&n);
while(n--)
{
cin>>a>>b>>c>>p>>q>>r>>s;
long long ans=;
if(a==&&b==&&c==)/*特判两种特殊的情况*/
{
if(q>=p&&s>=r)
ans=(q-p+)*(s-r+);/*区间如果可以取到,就是区间内所有元素的个数*/
cout<<ans<<endl;
continue;
}
if(a==&&b==&c!=)
{
cout<<""<<endl;
continue;
}
int gcd,x,y;
/* if(a<b) swap(a,b);扩展欧几里得算法是不在乎a,b的大小的,但是如果交换了a,b,那么x,y的值也会互掉了,所以不能交换*/
exgcd(a,b,x,y,gcd);
int k=(-*c)/gcd;
x*=k;y*=k;/*这是真正的x,y的值,刚才求的是ax+by==gcd(a,b)的解*/
int a0=a/gcd,b0=b/gcd;
for(int i=-;i<=;++i)/*一个可能的倍数范围*/
{
if(x+i*b0<p||x+i*b0>q||y-i*a0<r||y-i*a0>s) continue;
if(a*(x+i*b0)+b*(y-i*a0)==(-*c)) ans++;/*别忘记:i*b0,i*a0,一个是+,一个是-,而且,每次不是加a,b,而是加a/gcd(a,b)的值,只是满足这个关系的最小整数*/
}
cout<<ans<<endl;
}
return ;
}

扩展gcd codevs 1213 解的个数的更多相关文章

  1. codevs 1213 解的个数

    1213 解的个数 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold       题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c = ...

  2. Codevs 1213 解的个数(exgcd)

    1213 解的个数 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c=0 p< ...

  3. codevs 1213 解的个数(我去年打了个表 - -)

    #include<iostream> #include<cstdio> #include<cstring> using namespace std; int T,x ...

  4. 扩展gcd codevs 1200 同余方程

    codevs 1200 同余方程 2012年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 求关 ...

  5. 解的个数(codevs 1213)

    题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c = 0 p<=x<=q r<=y<=s 求满足这些条件的x,y的个数. 输入描述 Input ...

  6. 详解扩展欧几里得算法(扩展GCD)

    浅谈扩展欧几里得(扩展GCD)算法 本篇随笔讲解信息学奥林匹克竞赛中数论部分的扩展欧几里得算法.为了更好的阅读本篇随笔,读者最好拥有不低于初中二年级(这是经过慎重考虑所评定的等级)的数学素养.并且已经 ...

  7. 2014年百度之星程序设计大赛 - 初赛(第一轮) hdu Grids (卡特兰数 大数除法取余 扩展gcd)

    题目链接 分析:打表以后就能发现时卡特兰数, 但是有除法取余. f[i] = f[i-1]*(4*i - 2)/(i+1); 看了一下网上的题解,照着题解写了下面的代码,不过还是不明白,为什么用扩展g ...

  8. 学习:数学----gcd及扩展gcd

    gcd及扩展gcd可以用来求两个数的最大公因数,扩展gcd甚至可以用来求一次不定方程ax+by=c的解   辗转相除法与gcd 假设有两个数a与b,现在要求a与b的最大公因数,我们可以设 a=b*q+ ...

  9. 【扩展GCD】荒岛野人

    题目 [题目描述] 克里特岛以野人群居而著称.岛上有排列成环行的M个山洞.这些山洞顺时针编号为1,2,-,M.岛上住着N个野人,一开始依次住在山洞C1,C2,-,CN中,以后每年,第i个野人会沿顺时针 ...

随机推荐

  1. python开发规范(转载)

    转载自http://www.cnblogs.com/wangcp-2014/p/4838952.html 目录 代码布局 1.1 缩进 1.2 表达式和语句中的空格 1.3 行的最大长度 1.4 空行 ...

  2. 152.Maximum Product Subarray---dp---连续子数组的最大乘积---《编程之美》2.13子数组的最大乘积

    题目链接:https://leetcode.com/problems/maximum-product-subarray/description/ 题目大意:给出一串数组,找出连续子数组中乘积最大的子数 ...

  3. MAC 文件被锁定

    从windows拷贝到MAC的文件,有时候会被锁定.右键-简介-已锁定也是灰色的,无法取消: xattr -l 文件名 xattr -d com.apple.FinderInfo 文件名

  4. 在Ubuntu上安装Redis MySQL MongoDB memcached Nginx

    1.安装Redis sudo apt-get install redis-server 2.安装MySQL sudo apt-get install mysql-server 3.安装MongoDB ...

  5. u-boot启动第一阶段

    目标板:2440开发板 u-boot启动的第一阶段是在文件start.S中完成的,这个过程对不同硬件平台的设置是不同的.下面进入start.S _start: b reset //跳转到reset / ...

  6. python redis-string、list、set操作

    string操作 redis中的string在内存中都是按照一个key对应一个value来存储的 方法: set() 方法 : 写入一条数据 mset() 方法: 写入多条数据 , 可是Key-Val ...

  7. Windows 和Linux 误删除后的恢复

    ext文件系统上删除文件,可以恢复:extundelete; windows 恢复删除文件: final data v2.0汉化版 和 easyrecovery

  8. LeetCode818. Race Car

    https://leetcode.com/problems/race-car/description/ Your car starts at position 0 and speed +1 on an ...

  9. csu 最优对称路径(bfs+记忆化搜索)

    1106: 最优对称路径 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 371  Solved: 77[Submit][Status][Web Boar ...

  10. Mysql的刷脏页问题

    平时的工作中,不知道你有没有遇到过这样的场景,一条 SQL 语句,正常执行的时候特别快,但是有时也不知道怎么回事,它就会变得特别慢,并且这样的场景很难复现,它不只随机,而且持续时间还很短. 当内存数据 ...